
1

Application Layer 2-1

Chapter 2
Application Layer

Computer
Networking: A Top
Down Approach
6th edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).

They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.

They obviously represent a lot of work on our part. In return for use, we only

ask the following:

 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)

 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this

material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell’s CSCI 363

Xiannong Meng

Spring 2016
Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 2-3

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 2-4

Socket programming

Two socket types for two transport services:

 UDP: unreliable datagram

 TCP: reliable, byte stream-oriented

Application Example:

1. Client reads a line of characters (data) from its
keyboard and sends the data to the server.

2. The server receives the data and converts
characters to uppercase.

3. The server sends the modified data to the client.

4. The client receives the modified data and displays
the line on its screen.

Application Layer 2-5

Socket programming with UDP

UDP: no “connection” between client & server
 no handshaking before sending data

 sender explicitly attaches IP destination address and
port # to each packet

 rcvr extracts sender IP address and port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
 UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

 clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

Application 2-6

server (running on serverIP) client

2

Application Layer 2-7

Example app: UDP client

from socket import *

serverName = ‘hostname’

serverPort = 12000

clientSocket = socket(AF_INET,

 SOCK_DGRAM)

message = input(’Input lowercase sentence:’)

clientSocket.sendto(str.encode(message),

 (serverName, serverPort))

modifiedMessage, serverAddress =

 clientSocket.recvfrom(2048)

print (bytes.decode(modifiedMessage))

clientSocket.close()

Python UDPClient
include Python’s socket

library

create UDP socket for

server

get user keyboard

input

Attach server name, port to

message; send into socket

print out received string

and close socket

read reply characters from

socket into string

Application Layer 2-8

Example app: UDP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind((‘’, serverPort))

print (“The server is ready to receive”)

while 1:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.upper()

 serverSocket.sendto(modifiedMessage, clientAddress)

Python UDPServer

create UDP socket

bind socket to local port

number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string

back to this client

UDP server and client in C

 Exact the same functionality can be implemented

in C.

 Since the C language is a more primitive, more
complicated code is needed.

 See examples/socket.

 Basic flow:
 Create a socket

 Associate the server host information with a socket
address

 Bind the client socket to a local address

 Send the message to the server (read from client)

 Read the echoed message from the server (send back
to the client)

Application Layer 2-9 Application Layer 2-10

Socket programming with TCP

client must contact server

 server process must first be
running

 server must have created
socket (door) that
welcomes client’s contact

client contacts server by:

 Creating TCP socket,
specifying IP address, port
number of server process

 when client creates socket:
client TCP establishes
connection to server TCP

 when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client

 allows server to talk with
multiple clients

 source port numbers used
to distinguish clients
(more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Application Layer 2-11

Client/server socket interaction: TCP

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

server (running on hostid) client

send request using

clientSocket read request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket

Application Layer 2-12

Example app: TCP client

from socket import *

serverName = ’servername’

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = input(‘Input lowercase sentence:’)

clientSocket.send(str.encode(sentence))

modifiedSentence = clientSocket.recv(1024)

print (‘From Server: ’, bytes.decode(modifiedSentence))

clientSocket.close()

Python TCPClient

create TCP socket for

server, remote port 12000

No need to attach server

name, port

3

Application Layer 2-13

Example app: TCP server

 from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind((‘’,serverPort))

serverSocket.listen(1)

print (‘The server is ready to receive’)

while 1:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024)

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence)

 connectionSocket.close()

Python TCPServer

create TCP welcoming

socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept()

for incoming requests, new
socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this

client (but not welcoming

socket)

TCP server and client in C

 Exact the same functionality can be implemented

in C.

 Since the C language is a more primitive, more
complicated code is needed.

 See examples/socket.

 Basic flow:
 Create a socket

 Associate the server host information with a socket
address

 Bind the client socket to a local address

 Send the message to the server (read from client)

 Read the echoed message from the server (send back
to the client)

Application Layer 2-14

