Chapter 3
Transport Layer

A note on the use of these ppt slides:

We' re making these slides freely available to all (faculty, students, readers).
They' re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a /ot of work on our part. In return for use, we

only ask the following:

+ If you use these slides (e.g., in a class) that you mention their source ComPUter
(after all, we’ d like people to use our book!) .

+ If you post any slides on a www site, that you note that they are adapted Networ klng.A TOP
from (or perhaps identical to) our sides, and note our copyright of this D A h
material. own roaci

e

Thanks and enjoy! JFK/KWR Jim Kurose, Keith Ross
@ AlLmaterial copyright 1996:3012 Addison-Wesley
J.F Kurose and K.W. Ross, All Rights Reserved March 2012

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng
Spring 2016

Application Layer 2-1

REVIEW LAYERED
ARCHITECTURE

Transport Layer 3-3

Wireshark

+ Wireshark is a piece of software that can
capture and record network traffic “on the
wire.”

« It also allows user to examine the traffic in
a nice GUI.

+ We’ll use Wireshark to capture network
traffic, and write our own analyzer.

+ Our analyzer will peer into the layers and
examine in detail the information in each
captured frame.

+ Demonstration of Wireshark.

Transport Layer 3-5

Chapter 3: Transport Layer

our goals:

+ understand
principles behind
transport layer
services:

= multiplexing,
demultiplexing

= reliable data transfer

= flow control

= congestion control

source

message appli"atiOﬂ‘
segment [H] M | [trandport |
datagram H; H| ™M
frame

destination

application |
A M] [[transport §

e

+ learn about Internet
transport layer protocols:

= UDP: connectionless
transport

= TCP: connection-oriented
reliable transport

= TCP congestion control

Transport Layer 3-2

Encapsulation

In|

[HL A ™ | [[etwork

H|H] H] ™M link H He| ™M

physical

[H A M] []network
. M router

Introduction 1-4

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
= Segment structure
= reliable data transfer
= flow control
= connection management
3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-6

Transport services

and protocols

« provide logical communication
between app processes
running on different hosts

s transport protocols run in
end systems

= send side: breaks app
messages into segments,
passes to network layer

® recv side: reassembles
segments into messages,
passes to app layer

+ more than one transport
protocol available to apps

®= Internet: TCP and UDP

W “transport

[network |
Gata link_rrsiemaives
physical
&

networ
physical

Transport Layer 3-7

Internet transport-layer protocols

< reliable, in-order
delivery (TCP)
= congestion control
= flow control
® connection setup
% unreliable, unordered
delivery: UDP
= no-frills extension of
“best-effort” IP
+ services not available:
® delay guarantees
= bandwidth guarantees

B transport
| netwigg |
| data i

[CnetwSAN datalink |
[cata ko)
Consiol TPt

physical -]
T netmon®)
&

data link_ B w
physicel A0

5,
network_[C@N/
])
a2,

2

’ I T § R
g /= g
g e = ghb

Transport Layer 3-9

Multiplexing/demultiplexing

multiplexing at sender: ————
handle data trom multiple
sockets, add transport header
(later used for demultiplexing)

— demultiplexing at receiver:
use header info to deliver
received segments to correct
socket

application [L] socket
&L O

_ process
tranfgport
netiyork

application
application
transport negwerk
network !
link Ppysital

i3 w
phygical

[‘ physical

Transport Layer 3-11

Transport vs. network layer

+ network layer: logical
communication
between hosts

« transport layer:
logical
communication
between processes

= relies on, enhances,

network layer
services

household analogy:

12 kids in Ann ’s house sending

letters to 12 kids in Bill s
house:

hosts = houses

processes = kids

app messages = letters in
envelopes

transport protocol = Ann’
multiplexing and Bill’
demultiplexing to in-house
siblings

network-layer protocol =
postal service

Chapter 3 outline

Transport Layer 3-8

3.1 transport-layer 3.5 connection-oriented

services
3.2 multiplexing and
demultiplexing
3.3 connectionless
transport: UDP

transport: TCP

= segment structure

= reliable data transfer

= flow control

= connection management

3.4 principles of reliable 3.6 principles of congestion

data transfer

control

3.7 TCP congestion control

Transport Layer 3-10

How demultiplexing works

+ host receives IP datagrams

= each datagram has source IP
address, destination IP
address

= each datagram carries one
transport-layer segment
= each segment has source,
destination port number
+ host uses IP addresses &
port numbers to direct
segment to appropriate
socket

32 bits

source port # dest port #

other header fields

application
data
(payload)

TCP/UDP segment format

Transport Layer 3-12

Connectionless demultiplexing

recall: created socket has host-local recall: when creating datagram to

port #:

udp_sock = socket (AF_INET,
SOCK_DGRAM)

udp_sock.sendto (msg, (host,port))

send into UDP socket, must
specify
destination IP address
destination port #

« when host receives UDP
segment:
= checks destination port #
in segment
= directs UDP segment to
socket with that port #

IP datagrams with same
dest. port #, but different
source IP addresses
=) .ndlor source port
numbers will be directed
to same socket at dest

Transport Layer 3-13

Connection-oriented demux

+ TCP socket identified
by 4-tuple:
= source IP address
= source pOI‘t number
= dest IP address
= dest port number
+ demux: receiver uses
all four values to direct
segment to appropriate
socket

« server host may support
many simultaneous TCP
sockets:

= each socket identified by
its own 4-tuple

« web servers have
different sockets for
each connecting client

= non-persistent HTTP will
have different socket for
each request

Transport Layer 3-15

Connection-oriented demux: example

threaded server

application application
g Jat—s
tranfport Tanspo
netjvork lidk network
lipk IH rvical link \
f physical Server: [P physical : :
: address B
host: IP source IP,port: B,80 host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80 ———Source PporE COTST
dest IP,port: B,80

Transport Layer 3-17

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; application (5775) ;
application application
= I jm Ll
trangport nEetvlofk trangpol
nefork I netyvprk
k phisical I
[(physical phypical \
[
source port: 6428
dest port: 9157

source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-14

Connection-oriented demux: example

application
application application
andport [, N
tranport Hetwbork Transpor
netpork lidk network
lipk hydical link
f physical Server: [P physical : \
address B
host: IP source IP,port: B,80 <~ host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
dest IP,port: B,80.
source IPport: A,9157
dest IP, port: B,80 %source port: GOT157

dest IP,port: B,s_é
three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-16

Chapter 3 outline

3.5 connection-oriented
transport: TCP
" segment structure
= reliable data transfer
= flow control
= connection management
3.6 principles of congestion
control

3.7 TCP congestion control

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

Transport Layer 3-18

UDP: User Datagram Protocol [RFC 768]

> “no frills,” “bare bones” « UDP use:
Internet transport ® streaming multimedia
protocol apps (loss tolerant, rate
+ “best effort” service, sensitive)
UDP segments may be: = DNS
® lost = SNMP

» delivered out-of-order +« reliable transfer over

to app UDP:

%+ connectionless:
= no handshaking

between UDP sender,
receiver

= add reliability at
application layer

= application-specific error

1
= each UDP segment recovery:

handled independently

of others
Transport Layer 3-19

UDP Header File for C/C++
struct udphdr

{

u_intlé_t source; /* src port number */
u_intlé_t dest; /* dest port number */
u_intl6_t len; /* total length in bytes */
u_intl6_t check; /* check sum */

|5
In the file : /usr/include/netinet/udp.h

Transport Layer 3-21

Internet checksum: example

example: add two |6-bit integers

11100

11001100110
11010101

0101010

-

wrupar‘ound@lol1101110111011

sum 10

1 1011
checksum 010

11
000100001

[
[
o
o

110
001

[

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-23

UDP: segsment header

; length, in bytes of
32 bits UDP segment,

source port # W including header

length <[checksum

— why is there a UDP? _

» no connection

application establishment (which can
data add delay)
(payload) + simple: no connection

state at sender, receiver
«» small header size
% no congestion control:

UDP can blast away as
fast as desired

UDP segment format

Transport Layer 3-20

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
sender: receiver:
« treat segment contents, « compute checksum of
including header fields, received segment
as sequence of |6-bit . .
integers + check if computed

+ checksum: addition checksum equals checksum

(one’ s complement field value:

sum) of segment = NO - error detected

contents = YES - no error detected.
« sender puts checksum But maybe errors

value into UDP nonetheless? More later

checksum field

Transport Layer 3-22

UDP packet format

<« UDP header:

0 15 16 31
Source portnumber | Destination port number
UDP length UDP checksum

Data (f any)

Transport Layer 3-24

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.ietf.org/rfc/rfc768.txt

IP packet format UDP Checksum Computation

+ IP header: + According to RFC 768,

. « UDP checksum is computed as follows

= Checksum is the |6-bit one's complement of
I 519 at the one's complement sum of a pseudo header
Vs | | T s Tolmgh of information from the IP header, the UDP
. Flags Fregment Offeet header, and the data, padded with zero octets
at the end (if necessary) to make a multiple of
two octets.

0

Time To Live | Protocol Header Checksum

Source IP Address

Destination IP Address

Options Padding

Transport Layer 3-25 Transport Layer 3-26

http://en.wikipedia.org/wiki/IPv4
http://www.ietf.org/rfc/rfc791.txt
http://www.faqs.org/rfcs/rfc768.html

