
1

Application Layer 2-1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we
only ask the following:

 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng

Spring 2016
Transport Layer 3-2

Chapter 3: Transport Layer

our goals:
 understand

principles behind
transport layer
services:
 multiplexing,

demultiplexing

 reliable data transfer

 flow control

 congestion control

 learn about Internet
transport layer protocols:
 UDP: connectionless

transport

 TCP: connection-oriented
reliable transport

 TCP congestion control

REVIEW LAYERED

ARCHITECTURE

Transport Layer 3-3 Introduction

source

application

transport

network

link

physical

Ht Hn M

segment Ht

datagram

destination

application

transport

network

link

physical

Ht Hn Hl M

Ht Hn M

Ht M

M

network

link

physical

link

physical

Ht Hn Hl M

Ht Hn M

Ht Hn M

Ht Hn Hl M

router

switch

Encapsulation
message M

Ht M

Hn

frame

1-4

Wireshark

 Wireshark is a piece of software that can
capture and record network traffic “on the
wire.”

 It also allows user to examine the traffic in
a nice GUI.

 We’ll use Wireshark to capture network
traffic, and write our own analyzer.

 Our analyzer will peer into the layers and
examine in detail the information in each
captured frame.

 Demonstration of Wireshark.
Transport Layer 3-5 Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

2

Transport Layer 3-7

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in
end systems

 send side: breaks app
messages into segments,
passes to network layer

 recv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport Layer 3-8

Transport vs. network layer

 network layer: logical
communication
between hosts

 transport layer:
logical
communication
between processes
 relies on, enhances,

network layer
services

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

 hosts = houses
 processes = kids
 app messages = letters in

envelopes
 transport protocol = Ann’

multiplexing and Bill’
demultiplexing to in-house
siblings

 network-layer protocol =
postal service

household analogy:

Transport Layer 3-9

Internet transport-layer protocols

 reliable, in-order
delivery (TCP)
 congestion control

 flow control

 connection setup

 unreliable, unordered
delivery: UDP
 no-frills extension of
“best-effort” IP

 services not available:
 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

Transport Layer 3-10

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-11

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver: handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2 P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

Transport Layer 3-12

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP

address, destination IP
address

 each datagram carries one
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application

data
(payload)

other header fields

TCP/UDP segment format

3

Transport Layer 3-13

Connectionless demultiplexing

recall: created socket has host-local
port #:

udp_sock = socket(AF_INET,

SOCK_DGRAM)

udp_sock.sendto(msg,(host,port))

 when host receives UDP
segment:
 checks destination port #

in segment

 directs UDP segment to
socket with that port #

recall: when creating datagram to
send into UDP socket, must
specify

destination IP address

destination port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at dest

Transport Layer 3-14

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket

 (6428);

transport

application

physical

link

network

P3

transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket

 (9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Transport Layer 3-15

Connection-oriented demux

 TCP socket identified
by 4-tuple:
 source IP address

 source port number

 dest IP address

 dest port number

 demux: receiver uses
all four values to direct
segment to appropriate
socket

 server host may support
many simultaneous TCP
sockets:
 each socket identified by

its own 4-tuple

 web servers have
different sockets for
each connecting client
 non-persistent HTTP will

have different socket for
each request

Transport Layer 3-16

Connection-oriented demux: example

transport

application

physical

link

network

P3

transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6 P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

server: IP
address B

Transport Layer 3-17

Connection-oriented demux: example

transport

application

physical

link

network

P3

transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Transport Layer 3-18

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

4

Transport Layer 3-19

UDP: User Datagram Protocol [RFC 768]

 “no frills,” “bare bones”
Internet transport
protocol

 “best effort” service,
UDP segments may be:

 lost

 delivered out-of-order
to app

 connectionless:

 no handshaking
between UDP sender,
receiver

 each UDP segment
handled independently
of others

 UDP use:
 streaming multimedia

apps (loss tolerant, rate
sensitive)

 DNS

 SNMP

 reliable transfer over
UDP:
 add reliability at

application layer

 application-specific error
recovery!

Transport Layer 3-20

UDP: segment header

source port # dest port #

32 bits

application

data
(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

 no connection
establishment (which can
add delay)

 simple: no connection
state at sender, receiver

 small header size

 no congestion control:
UDP can blast away as
fast as desired

why is there a UDP?

UDP Header File for C/C++
struct udphdr

{

 u_int16_t source; /* src port number */

 u_int16_t dest; /* dest port number */

 u_int16_t len; /* total length in bytes */

 u_int16_t check; /* check sum */

};

Transport Layer 3-21

In the file : /usr/include/netinet/udp.h

Transport Layer 3-22

UDP checksum

sender:
 treat segment contents,

including header fields,
as sequence of 16-bit
integers

 checksum: addition
(one’s complement
sum) of segment
contents

 sender puts checksum
value into UDP
checksum field

receiver:
 compute checksum of

received segment

 check if computed
checksum equals checksum
field value:

 NO - error detected

 YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Transport Layer 3-23

Internet checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

UDP packet format

 UDP header:
 http://en.wikipedia.org/wiki/User_Datagram_Pr

otocol

 http://www.ietf.org/rfc/rfc768.txt

Transport Layer 3-24

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://www.ietf.org/rfc/rfc768.txt

5

IP packet format

 IP header:
 http://en.wikipedia.org/wiki/IPv4

 http://www.ietf.org/rfc/rfc791.txt

Transport Layer 3-25

UDP Checksum Computation

 According to RFC 768,
http://www.faqs.org/rfcs/rfc768.html

 UDP checksum is computed as follows
Checksum is the 16-bit one's complement of

the one's complement sum of a pseudo header
of information from the IP header, the UDP
header, and the data, padded with zero octets
at the end (if necessary) to make a multiple of
two octets.

Transport Layer 3-26

http://en.wikipedia.org/wiki/IPv4
http://www.ietf.org/rfc/rfc791.txt
http://www.faqs.org/rfcs/rfc768.html

