
1

Application Layer 2-1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we
only ask the following:

 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng

Spring 2016
Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-4

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

Transport Layer 3-5

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers
 top-10 list of important networking topics!

Principles of reliable data transfer

Transport Layer 3-6

Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

2

Transport Layer 3-7

We will:

 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

 consider only unidirectional data transfer
 but control info will flow on both directions!

 use finite state machines (FSM) to specify
behaviors of sender, receiver

state

1
state

2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Reliable data transfer: getting started

Transport Layer 3-8

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel

 receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-9

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”
during conversation?

Transport Layer 3-10

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:

 acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

Transport Layer 3-11

rdt2.0: FSM specification

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below sender

receiver
rdt_send(data)

L

Transport Layer 3-12

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

3

Transport Layer 3-13

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

Transport Layer 3-14

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:
 sender retransmits

current pkt if ACK/NAK
corrupted

 sender adds sequence
number to each pkt

 receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver’s
response

