
1

Application Layer 2-1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we
only ask the following:

 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng

Spring 2016
Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-4

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

Transport Layer 3-5

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers
 top-10 list of important networking topics!

Principles of reliable data transfer

Transport Layer 3-6

Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to

deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

2

Transport Layer 3-7

We will:

 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

 consider only unidirectional data transfer
 but control info will flow on both directions!

 use finite state machines (FSM) to specify
behaviors of sender, receiver

state

1
state

2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Reliable data transfer: getting started

Transport Layer 3-8

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel

 receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

udt_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

Transport Layer 3-9

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”
during conversation?

Transport Layer 3-10

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:

 acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

Transport Layer 3-11

rdt2.0: FSM specification

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below sender

receiver
rdt_send(data)

L

Transport Layer 3-12

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

3

Transport Layer 3-13

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

 corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

Transport Layer 3-14

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:
 sender retransmits

current pkt if ACK/NAK
corrupted

 sender adds sequence
number to each pkt

 receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver’s
response

