
1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we
only ask the following:

 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng

Spring 2016
Transport Layer 3-1

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

TCP: Overview RFCs: 793,1122,1323, 2018, 2581, 5681

 full duplex data:
 bi-directional data flow

in same connection

 MSS: maximum segment
size

 connection-oriented:
 handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

 flow controlled:
 sender will not

overwhelm receiver

 point-to-point:
 one sender, one receiver

 reliable, in-order byte
steam:
 no “message

boundaries”

 pipelined:
 TCP congestion and

flow control set window
size

Transport Layer 3-4

TCP segment structure

source port # dest port #

32 bits

application

data

(variable length)

sequence number

acknowledgement number

receive window

Urg data pointer checksum

F S R P A U
head

len

not

used

options (variable length)

URG: urgent data

(generally not used)

ACK: ACK #

valid

PSH: push data now

(generally not used)

RST, SYN, FIN:

connection estab

(setup, teardown

commands)

bytes

rcvr willing

to accept

counting

by bytes

of data

(not segments!)

Internet

checksum

(as in UDP)

TCP header file

 The TCP header is defined in tcp.h in the
directory of /usr/include/netinet/

 View it from Linux file system

Transport Layer 3-5 Transport Layer 3-6

TCP seq. numbers, ACKs

sequence numbers:

byte stream “number” of
first byte in segment’s
data

acknowledgements:

seq # of next byte
expected from other side

cumulative ACK

Q: how receiver handles
out-of-order segments

A: TCP spec doesn’t say,
- up to implementor source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/html/rfc1122
http://www.ietf.org/rfc/rfc1323.txt
http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/search/rfc2581
http://tools.ietf.org/search/rfc5681

2

TCP seq. numbers, ACKs (1)

 Assume A sends B a 500,000 bytes file, and
Maximum Segment Size (MSS) is 1,000
bytes, the first byte is numbered 0, B only
sends ack, no other information

 The file is segmented into 500 segments,
 0-999, 1000-1999, … 499,000-499,999

 (seq, ack) from A to B would be (0, n/a),
(1000, n/a) …

Transport Layer 3-7

TCP seq. numbers, ACKs (2)

 If B also sends something data to A, the
acks can be “piggy-backed” in data
segments

 We may see the (seq, ack) between A and
B as
A(0, n/a), B(0, 1000), A(1000, 5), B(5, 2000), …

Where B(0, 1000) means B is sending packet
starting from 0, and B has received packets up
to 999 from A, expecting packet 1000 from A

A(0, n/a) means A is sending packets starting
from 0, the ack field is not used because
nothing has received from B yet

Transport Layer 3-8

TCP seq. numbers, ACKs (3)

 Packets could arrive out of order, for
example A has received all the bytes from 0
through 535, and from 900 through 999,
but missing packets between 536 and 899.
How to handle? Two options
Ack through 535, discard 900 through 999

Ack through 535, buffer 900 through 999 for
later reassemble

 TCP standards didn’t specify what to do.

 The application layer always sees ordered
data, nothing out-of-order is available to
application.

Transport Layer 3-9 Transport Layer 3-10

TCP seq. numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

simple telnet scenario

Host B Host A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer 3-11

TCP round trip time, timeout

Q: how to set TCP
timeout value?

 longer than RTT

 but RTT varies

 too short: premature
timeout, unnecessary
retransmissions

 too long: slow reaction
to segment loss

Q: how to estimate RTT?
 SampleRTT: measured

time from segment
transmission until ACK
receipt

 ignore retransmissions

 SampleRTT will vary, want
estimated RTT “smoother”

 average several recent
measurements, not just
current SampleRTT

Transport Layer 3-12

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

3

Transport Layer 3-13

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

TCP round trip time, timeout example

Packet # Estimate RTT (ms) Sample RTT (ms)

20 10 40

21 14 42

22 18 35

23 20 38

24 23 …

 = 0.125

Transport Layer 3-14

 timeout interval: EstimatedRTT plus “safety margin”

 large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

 *|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-15

TCP round trip time, timeout example

DevRTT = (1-0.25)*5 +

 0.25*|38-20| = 9 ms

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

In our example:
TimeoutInterval = 20 + 4 * 9 = 56 ms

Transport Layer 3-16

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-17

TCP reliable data transfer

 TCP creates rdt service
on top of IP’s unreliable
service
 pipelined segments

 cumulative acks

 single retransmission
timer

 retransmissions
triggered by:
 timeout events

 duplicate acks

let’s initially consider
simplified TCP sender:
 ignore duplicate acks

 ignore flow control,
congestion control

Transport Layer 3-18

TCP sender events:

data rcvd from app:

 create segment with
seq #

 seq # is byte-stream
number of first data
byte in segment

 start timer if not
already running
 think of timer as for

oldest unacked
segment

 expiration interval:
TimeOutInterval

timeout:

 retransmit segment
that caused timeout

 restart timer

 ack rcvd:

 if ack acknowledges
previously unacked
segments
 update what is known

to be ACKed

 start timer if there are
still unacked segments

4

Transport Layer 3-19

TCP sender (simplified Fig. 3.33, p. 243)

wait

for

event

NextSeqNum = InitialSeqNum

SendBase = InitialSeqNum

L

create segment, seq. #: NextSeqNum

pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)

if (timer currently not running)

 start timer

data received from application above

retransmit not-yet-acked segment
 with smallest seq. #

start timer

timeout

if (y > SendBase) {

 SendBase = y

 /* SendBase–1: last cumulatively ACKed byte */

 if (there are currently not-yet-acked segments)

 start timer

 else stop timer

 }

ACK received, with ACK field value y

Transport Layer 3-20

TCP: retransmission scenarios

lost ACK scenario

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8 bytes of data

X ti
m

e
o
u
t

ACK=100

premature timeout

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=92, 8
bytes of data

ti
m

e
o
u
t

ACK=120

Seq=100, 20 bytes of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Transport Layer 3-21

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-22

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver

arrival of in-order segment with

expected seq #. All data up to

expected seq # already ACKed

arrival of in-order segment with

expected seq #. One other

segment has ACK pending

arrival of out-of-order segment

higher-than-expect seq. # .

Gap detected

arrival of segment that

partially or completely fills gap

TCP receiver action

delayed ACK. Wait up to 500ms

for next segment. If no next segment,

send ACK

immediately send single cumulative

ACK, ACKing both in-order segments

immediately send duplicate ACK,

indicating seq. # of next expected byte

immediate send ACK, provided that

segment starts at lower end of gap

Transport Layer 3-23

Fast retransmit after sender

receipt of triple duplicate ACK

TCP retransmit scenario

X

Host B Host A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

What does it mean if the sender

receives multiple ACKs for the same packet?

An earlier packet is lost!

Transport Layer 3-24

TCP fast retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-
to-back

 if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

