Chapter 3

Transport Layer

A note on the use of these ppt slides:

Computer Networking

We' re making these slides freely available to all (faculty, students, readers). e

They' re in PowerPoint form so you see the animations; and can add, modify, e ew
and delete slides (including this one) and slide content to suit your needs.

They obviously represent a /ot of work on our part. In return for use, we

only ask the following:

+ If you use these slides (e.g., in a dlass) that you mention their source

(after all, we' d like people to use our book!)

+ If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this

material.
Thanks and enjoy! JFK/KWR

All material copyright 1996-2012
=]
J.F Kurose and K.W. Ross, All Rights Reserved

Computer
Networking:A Top
Down Approach

6t edition
Jim Kurose, Keith Ross
Addison-Wesley
March 2012

The course notes are adapted for Bucknell’s CSCI 363

Xiannong Meng
Spring 2016

TCP: Overview recs:

Transport Layer 3.1

% point-to-point:
®" one sender, one receiver
« reliable, in-order byte
steam:

" no “message
o8,
boundaries

« pipelined:
= TCP congestion and

flow control set window
size

TCP header file

+ full duplex data:

= bi-directional data flow
in same connection

= MSS: maximum segment
size
+ connection-oriented:

= handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange
+ flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-3

+ The TCP header is defined in tcp.h in the
directory of /usr/include/netinet/

+ View it from Linux file system

Transport Layer 3-5

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP
3.2 multiplexing and
demultiplexing
3.3 connectionless
transport: UDP
3.4 principles of reliable 3.6 principles of congestion
data transfer control
3.7 TCP congestion control

= segment structure

= reliable data transfer

= flow control

= connection management

Transport Layer 3-2

TCP segment structure

32 bits
URG: urgent data countin
(generally not used) source port # | dest port # by byteg
ACK: ACK # sequence number of data

valid ———_acknowledgement number (not segmentst)

head| n © .
PSH: push datanow | kn |use |JPIRS| receive window

—T " # bytes

enerally not used

@ y) cheeksum Urg data pointer rovr wiling
RST, SYN, FIN:= | optjefis (variable length) to accept

connection estab
(setup, teardown
commands)

application
Internet data
checksum (variable length)
(as in UDP)

Transport Layer 3-4

TCP seq. numbers, ACKs

outgoing segment from sender
sequence numbers:
“ »” sequence number
=byte stream “number" of
")
first byte in segment’ s rwnd
data

acknowledgements: —w
Fotair- ||| ||
expected from other side
I [\

sender sequence number space
= cumulative ACK

Q: how receiver handles g [t oot usable - not

[T T 7

window size

yEtACKed but not usable
out-of-order segments &é?‘}") yet sent

incoming segment to sender

[sequence number |

=A: TCP spec doesn’ t say,
- up to implementor

acknowledgement number |
W[rwnd

Transport Layer 3-6

http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/html/rfc1122
http://www.ietf.org/rfc/rfc1323.txt
http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/search/rfc2581
http://tools.ietf.org/search/rfc5681

TCP seq. numbers, ACKs (1)

« Assume A sends B a 500,000 bytes file, and
Maximum Segment Size (MSS) is 1,000
bytes, the first byte is numbered 0, B only
sends ack, no other information

+ The file is segmented into 500 segments,
= 0-999, 1000-1999, ... 499,000-499,999

+ (seq, ack) from A to B would be (0, n/a),
(1000, n/a) ...

Transport Layer 3-7

TCP seq. numbers, ACKs (3)

+ Packets could arrive out of order, for
example A has received all the bytes from 0
through 535, and from 900 through 999,
but missing packets between 536 and 899.
How to handle? Two options
= Ack through 535, discard 900 through 999
= Ack through 535, buffer 900 through 999 for

later reassemble

+ TCP standards didn’t specify what to do.

+ The application layer always sees ordered
data, nothing out-of-order is available to
application.

Transport Layer 3-9

TCP round trip time, timeout

Q: how to set TCP Q: how to estimate RTT?
timeout value? + SampleRTT: measured

+ longer than RTT ansmisionamel ACK
= but RTT varies receipt
% too short: premature = jgnore retransmissions
timeout, unnecessary + SampleRTT will vary, want
retransmissions estimated RTT “smoother

= average several recent
measurements, not just
current SampleRTT

% too long: slow reaction
to segment loss

Transport Layer 3-11

TCP seq. numbers, ACKs (2)

+ If B also sends something data to A, the
acks can be “piggy-backed” in data
segments

+ We may see the (seq, ack) between A and
B as

= A(0, n/a), B(0, 1000), A(1000, 5), B(5, 2000), ...

= Where B(0, 1000) means B is sending packet
starting from 0, and B has received packets up
to 999 from A, expecting packet 1000 from A

= A(0, n/a) means A is sending packets starting
from 0, the ack field is not used because
nothing has received from B yet

Transport Layer 3-8

TCP seq. numbers, ACKs

Host Host B
I \

w

—
Seq=42, ACK=79, data = ‘C’
d\. host ACKs

receipt of
‘C’, echoes
Seq=79, ACK=43, data = ‘C’ ‘c
host ACKs d back “C

receipt
of echoed
c

Seq=43, ACK:BO\‘

simple telnet scenario

Transport Layer 3-10

TCP round trip time, timeout

EstimatedRTT = (1- a)*EstimatedRTT + oa*SampleRTT

« exponential weighted moving average
« influence of past sample decreases exponentially fast
« typical value:a = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr]

I

RTT (milliseconds)

4 sampleRTT
EstimatedRTT

time (seconds) Transport Layer 3-12

TCP round trip time, timeout example

EstimatedRTT = (1- a)*EstimatedRTT + a*SampleRTT

a = 0.125
20 10 40
21 14 42
22 18 35
23 20 38
24 23

Transport Layer 3-13

TCP round trip time, timeout example

DevRTT = (1-0.25)*5 +
0.25*|38-20| = 9 ms

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

In our example:
TimeoutInterval = 20 + 4 * 9 = 56 ms

Transport Layer 3-15

TCP reliable data transfer

% TCP creates rdt service
on top of IP’ s unreliable
service

= pipelined segments s

= cumulative acks let’ s initially consider

= single retransmission simplified TCP sender:
timer = ignore duplicate acks

= ignore flow control,

congestion control

< retransmissions
triggered by:
= timeout events
= duplicate acks

Transport Layer 3-17

TCP round trip time, timeout

« timeout interval: EstimatedRTT plus “safety margin”
= large variation in EstimatedRTT -> larger safety margin
« estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT|

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

g estimated RTT “safety margin”

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and * segment structure
demultiplexing = reliable data transfer

3.3 connectionless * flow control
transport: UDP ® connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control

3.7 TCP congestion control

Transport Layer 3-16

TCP sender events:

data rcvd from app: timeout:

+ create segment with %+ retransmit segment
seq # that caused timeout

« seq # is byte-stream « restart timer
number of first data ack revd:

byte in segment

. . + if ack acknowledges
+« start timer if not

previously unacked

already running segments
= think of timer as for = update what is known
oldest unacked to be ACKed
segment = start timer if there are
® expiration interval: still unacked segments
TimeOutInterval

Transport Layer 3-18

TCP sender (simplified Fig. 3.33, p. 243)

data received from application above
create segment, seq. #: NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

A .
Y

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

timeout

retransmit not-yet-acked segment
with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y
/* SendBase-1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)
start timer
else stop timer

Transport Layer 3-19

TCP: retransmission scenarios

Host A Host B
< =
—
Seq=92, 8 bytes of data
7 ==,

Seq=100, 20 byte%fdz:
ACK=100
X /

ACK=120

k——— timeout

Seq=120, 15 bytes of data

cumulative ACK

Transport Layer 3-21

TCP retransmit scenario

Host A Host B

[~ Seq=92, 8 bytes of data
w

What does it mean if the sender
receives multiple ACKs for the same packet?

| ACK=100
ACK=100
ACK=100
LA

[_ACK=100

0, 20 bytes of data Fast retransmit after sender
receipt of triple duplicate ACK

An earlier packet is lost!

timeout

Transport Layer 3-23

TCP: retransmission scenarios

Host A Host B Host A Host B
. E 9 ®
SendBase=92 |~
T Seq=92, 8 bytes of data ‘ Seq=92, 8 bytes of data
\ \
‘g — 5| Seq=100, 20 bytes of da
8 ACK=100 5
£ £
ACK:lO(/
l ACK=120
—~
Seq=92, 8 bytes of data Seq=92, 8
SendBase=100 4
ndbase: bytes of data—_|
CK=100 SendBase=120
ACK=L ACK=120
SendBase=120 —
lost ACK scenario premature timeout

Transport Layer 3-20

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-22

TCP fast retransmit

« time-out period often

relatively long: r TCP fast retransmit—
* long delay before if sender receives 3
resending lost packet ACKs for same data
+ detect lost segments (“triple duplicate ACKs”),

via duplicate ACKs. resend unacked

= sender often sends segment with smallest
many segments back- seq#
to-back

= if segment is lost, there
will likely be many
duplicate ACKs.

= likely that unacked
,
segment lost, so don t
wait for timeout

Transport Layer 3-24

