
1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we
only ask the following:

 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng

Spring 2016
Transport Layer 3-1

Transport Layer 3-2

TCP: retransmission scenarios

X

cumulative ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

Seq=120, 15 bytes of data

ti
m

e
o
u
t

Seq=100, 20 bytes of data

ACK=120

Transport Layer 3-3

Fast retransmit after sender

receipt of triple duplicate ACK

TCP retransmit scenario

X

Host B Host A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

What does it mean if the sender

receives multiple ACKs for the same packet?

An earlier packet is lost!

Transport Layer 3-4

TCP fast retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-
to-back

 if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-5

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-6

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering

(sender is sending)

from sender

receiver controls sender, so

sender won’t overflow

receiver’s buffer by transmitting

too much, too fast

flow control

2

Transport Layer 3-7

TCP flow control

buffered data

free buffer space rwnd

RcvBuffer

TCP segment payloads

to application process

 receiver “advertises” free
buffer space by including rwnd
value in TCP header of
receiver-to-sender segments
 RcvBuffer size set via socket

options (typical default is 4096
bytes, see setsockopt() and
socket(7))

 many operating systems autoadjust
RcvBuffer

 sender limits amount of
unacked (“in-flight”) data to
receiver’s rwnd value

 guarantees receive buffer will
not overflow

receiver-side buffering

Transport Layer 3-8

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-9

Connection Management

before exchanging data, sender/receiver “handshake”:
 agree to establish connection (each knowing the other willing

to establish connection)

 agree on connection parameters

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size

 at server,client

application

network

Socket clientSocket =

 new Socket("hostname","port

number");

Socket connectionSocket =

welcomeSocket.accept();

Transport Layer 3-10

Q: will 2-way handshake
always work in
network?

 variable delays

 retransmitted messages
(e.g. req_conn(x)) due to
message loss

 message reordering

 can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x

req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 3-11

Agreeing to establish a connection

2-way handshake failure scenarios:

2.retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

1.choose x
 req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
 req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer 3-12

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

3

Transport Layer 3-13

TCP 3-way handshake: FSM

closed

L

listen

SYN
rcvd

SYN
sent

ESTAB

Socket clientSocket =

 new Socket("hostname","port

number");

SYN(seq=x)

Socket serverSocket =

welcomeSocket.accept();

SYN(x)
SYNACK(seq=y,ACKnum=x+1)

create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)

ACK(ACKnum=y+1)

L

Transport Layer 3-14

TCP: closing a connection

 client, server each close their side of connection
 send TCP segment with FIN bit = 1

 respond to received FIN with ACK
 on receiving FIN, ACK can be combined with own FIN

 simultaneous FIN exchanges can be handled

Transport Layer 3-15

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1

 wait for server
close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

 timed wait
for 2*max

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=x can no longer
send but can
 receive data

clientSocket.close()

client state

server state

ESTAB ESTAB

