Computer Networking

Chapter 3
Transport Layer

A note on the use of these ppt slides:

We' re making these slides freely available to all (faculty, students, readers).)
They' re in PowerPoint form so you see the animations; and can add, modify, e ew
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a /ot of work on our part. In return for use, we
only ask the following:

= If you use these slides (e.g., in a class) that you mention their source ComPUter
(after all, e’ d like people to use our book!) inge
= If you post any slides on a www site, that you note that they are adapted Networ klng.A TOP
from (or perhaps identical to) our slides, and note our copyright of this
e) P Down Approach
6 edition

Thanks and enjoy! JFK/KWR Jim Kurose, Keith Ross

@ All material copyright 1996-2012 Addison-Wesley
J.F Kurose and K.W. Ross, All Rights Reserved March 2012

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng

Spring 2016 Transport Layer 3.1

TCP retransmit scenario

Host A Host B
N

XVE
[~ Seq=92, 8 bytes of data
X

What does it mean if the sender
receives multiple ACKs for the same packet?

|_ACK=100
ACK=100
ACK=100
s

[_Ack=100

0, 20 bytes of data Fast retransmit after sender
receipt of triple duplicate ACK

An earlier packet is lost!

timeout

Transport Layer 3-3

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented

services transport: TCP
3.2 multiplexing and * segment structure
demultiplexing = reliable data transfer
3.3 connectionless * flow control
transport: UDP = connection management
3.4 principles of reliable 3.6 principles of congestion
data transfer control

3.7 TCP congestion control

Transport Layer 3-5

TCP: retransmission scenarios

Host A Host B
—

Seq=92, 8 bytes of data
7

Seq=100, 20 byt @
q=100, es o

ACK=100
X

ACK=120

/\

k——— timeout —*

Seq=120, 15 bytes of data

cumulative ACK

Transport Layer 3-2

TCP fast retransmit

« time-out period often
relatively long:
® long delay before
resending lost packet
« detect lost segments
via duplicate ACKs.
= sender often sends
many segments back-
to-back
= if segment is lost, there

will likely be many
duplicate ACKs.

TCP flow control

r TCP fast retransmit—
if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #

= likely that unacked

segment lost,so don’ t
wait for timeout

Transport Layer 3-4

application may
remove data from +——— |]
TCP socket buffers ...

I,
TCP socket
receiver buffers
... slower than TCP A

receiver is delivering ——
(sender is sending)

flow control
receiver controls sender; so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

application
process

| -]
P
code
| 1]

' |
from sender)

receiver protocol stack

Transport Layer 3-6

application

TCP flow control

+ receiver “advertises” free

buffer space by including rwnd

value in TCP header of

receiver-to-sender segments

= RcvBuffer size set via socket

options (typical default is 4096
bytes, see setsockopt() and
socket(7))

= many operating systems autoadjust

RcvBuffer

sender limits amount of

unacked (“in-flight”) data to

U,

receiver' s rwnd value

» guarantees receive buffer will
not overflow

to application process

"

]
RevBuffer buffered data

rvad free buffer space

Py

TCP segment payloads

receiver-side buffering

Transport Layer 3-7

Connection Management

before exchanging data, sender/receiver “handshake”:
« agree to establish connection (each knowing the other willing

to establish connection)

< agreeon connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

g network

Socket clientSocket =
new Socket ("hostname", "port
number") ;

application

Le ot
connection state: ESTAB
connection Variables:

seq # client-to-server

server-to-client
rcvBuffer size
at server,client

network E

Socket connectionSocket =
welcomeSocket.accept () ;

Transport Layer 3-9

Agreeing to establish a connection

2-way handshake failure scenarios:

g B
1l.choose x |—,
req_conn(x;
> ESTAB

acc_conn(x)

2.retransmit
req_conn(x)

ESTAB
req_conn(x)

_ connection _ | _ _ _
client x completes ~ [server
terminates forgets x
» ESTAB
half open connection!
(no client!)

2 B

choose x |—,
req_conn(x
ESTAB
retransmit acc_conn(x)
req_conn(x) 2
ESTAB
data(x+l)\~ accept
retransmit data(x+1)
data(x+1) ™\
_ connection _|_ _ _ _
client X completes = Fserver
terminates req_conn(x) forgets x
ESTAB
data(x+1)__| accept
data(x+1)

Transport Layer 3-11

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and * segment structure
demultiplexing = reliable data transfer

3.3 connectionless = flow control
transport: UDP = connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control
3.7 TCP congestion control

Transport Layer 3-8

Agreeing to establish a connection

2-way handshake:

Q: will 2-way handshake
always work in

- network?
Let’s talk .
ESTAB « variable delays
oK i
ESTAB & « retransmitted messages

(e.g. req_conn(x)) due to
message loss
E « message reordering

h . e ” oth id
choose x \req_conn(x < can see other side
ESTAB

acc_conn(x)
ESTAB #—

Transport Layer 3-10

TCP 3-way handshake

client state ‘/ Eﬂ server state
LISTEN LISTEN
choose init seq num, x

send TCP SYN msg

SYNSENT SYNbit=1, Seg=x
choose init seq num, y
send TCP SYNACK
msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
received SYNACK(x)
indicates server is live;
ESTAB and ACK for SYNACK: |~
this segment may contain | Ackpit=1 ACKnum=y+1
client-to-server data ! received ACK(y)

indicates client is live
ESTAB

Transport Layer 3-12

TCP 3-way handshake: FSM

Socket serverSocket =
welcomeSocket.accept () ;

Socket clientSocket =
new Socket ("hostname" , "port

-
-

SYN(x)

SYNACK(seq=y,ACKnum=x+1) number”) ;
create new socket for SYN(seq=x)
ccommunication back to client

‘ | s¥nack(seq=yACKnum=x+1)
ACK(ACKnum=y+1)

ACK(ACKnum=y+1)
A

Transport Layer 3-13

TCP: closing a connection

dlient state g E server state
ESTAB

ESTAB
clientSocket.close () \Fmb-t .
FIN_WAIT_1 can no longer it=1, seq=x
n - send but can ' Q\
receive data — CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can still
FIN_WAIT_2 wait for server . o——" send data
close
LAST_ACK
EINbit=1, seq="
TIMED_WAIT ‘)N =y can no longer
- T —— send data
ACKbit=1; ACKnum=y+1
timed wait —
for 2¥max CLOSED
segment lifetime

CLOSED

Transport Layer 3-15

TCP: closing a connection

<+ client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK
= on receiving FIN, ACK can be combined with own FIN
« simultaneous FIN exchanges can be handled

Transport Layer 3-14

