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TCP retransmit scenario
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What does it mean if the sender
receives multiple ACKs for the same packet?
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0, 20 bytes of data Fast retransmit after sender
receipt of triple duplicate ACK

An earlier packet is lost!
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Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented

services transport: TCP
3.2 multiplexing and * segment structure
demultiplexing = reliable data transfer
3.3 connectionless * flow control
transport: UDP = connection management
3.4 principles of reliable 3.6 principles of congestion
data transfer control

3.7 TCP congestion control
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TCP: retransmission scenarios
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TCP fast retransmit

« time-out period often
relatively long:
® long delay before
resending lost packet
« detect lost segments
via duplicate ACKs.
= sender often sends
many segments back-
to-back
= if segment is lost, there

will likely be many
duplicate ACKs.

TCP flow control

r TCP fast retransmit—
if sender receives 3
ACKs for same data
(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #

= likely that unacked

segment lost,so don’ t
wait for timeout
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application may
remove data from +——— | ]
TCP socket buffers ...

I,
TCP socket
receiver buffers
... slower than TCP A

receiver is delivering ——
(sender is sending)

flow control
receiver controls sender; so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

application
process

| -]
P
code
| 1]

' |
from sender)

receiver protocol stack
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application



TCP flow control

+ receiver “advertises” free

buffer space by including rwnd

value in TCP header of

receiver-to-sender segments

= RcvBuffer size set via socket

options (typical default is 4096
bytes, see setsockopt() and
socket(7))

= many operating systems autoadjust

RcvBuffer

sender limits amount of

unacked (“in-flight”) data to

U,

receiver' s rwnd value

» guarantees receive buffer will
not overflow

to application process

"

]
RevBuffer buffered data

rvad free buffer space

Py

TCP segment payloads

receiver-side buffering
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Connection Management

before exchanging data, sender/receiver “handshake”:
« agree to establish connection (each knowing the other willing

to establish connection)

< agreeon connection parameters

application

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer size
at server,client

g network

Socket clientSocket =
new Socket ("hostname", "port
number") ;

application

Le ot
connection state: ESTAB
connection Variables:

seq # client-to-server

server-to-client
rcvBuffer size
at server,client

network E

Socket connectionSocket =
welcomeSocket.accept () ;
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Agreeing to establish a connection

2-way handshake failure scenarios:

g B
1l.choose x |—,
req_conn(x;
> ESTAB

acc_conn(x)

2.retransmit
req_conn(x)

ESTAB
req_conn(x)

_ connection _ | _ _ _
client x completes ~ [server
terminates forgets x
» ESTAB
half open connection!
(no client!)

2 B

choose x |—,
req_conn(x
ESTAB
retransmit acc_conn(x)
req_conn(x) 2
ESTAB
data(x+l)\~ accept
retransmit data(x+1)
data(x+1) ™\
_ connection _|_ _ _ _
client X completes = Fserver
terminates req_conn(x) forgets x
ESTAB
data(x+1)__| accept
data(x+1)
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Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and * segment structure
demultiplexing = reliable data transfer

3.3 connectionless = flow control
transport: UDP = connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control
3.7 TCP congestion control
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Agreeing to establish a connection

2-way handshake:

Q: will 2-way handshake
always work in

- network?
Let’s talk .
ESTAB « variable delays
oK i
ESTAB & « retransmitted messages

(e.g. req_conn(x)) due to
message loss
E « message reordering

h . e ” oth id
choose x \req_conn(x < can see other side
ESTAB

acc_conn(x)
ESTAB #—
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TCP 3-way handshake

client state ‘/ Eﬂ server state
LISTEN LISTEN
choose init seq num, x

send TCP SYN msg

SYNSENT SYNbit=1, Seg=x
choose init seq num, y
send TCP SYNACK
msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1
received SYNACK(x)
indicates server is live;
ESTAB  and ACK for SYNACK: |~
this segment may contain | Ackpit=1 ACKnum=y+1
client-to-server data ! received ACK(y)

indicates client is live
ESTAB
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TCP 3-way handshake: FSM

Socket serverSocket =
welcomeSocket.accept () ;

Socket clientSocket =
new Socket ("hostname" , "port

-
-

SYN(x)

SYNACK(seq=y,ACKnum=x+1) number”) ;
create new socket for SYN(seq=x)
ccommunication back to client

‘ | s¥nack(seq=yACKnum=x+1)
ACK(ACKnum=y+1)

ACK(ACKnum=y+1)
A
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TCP: closing a connection

dlient state g E server state
ESTAB

ESTAB
clientSocket.close () \Fmb-t .
FIN_WAIT_1 can no longer it=1, seq=x
n - send but can ' Q\
receive data — CLOSE_WAIT
ACKbit=1; ACKnum=x+1 can still
FIN_WAIT_2 wait for server . o——" send data
close
LAST_ACK
EINbit=1, seq="
TIMED_WAIT ‘)N =y can no longer
- T —— send data
ACKbit=1; ACKnum=y+1
timed wait —
for 2¥max CLOSED
segment lifetime

CLOSED
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TCP: closing a connection

<+ client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK
= on receiving FIN, ACK can be combined with own FIN
« simultaneous FIN exchanges can be handled
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