
1

Chapter 3
Transport Layer

Computer
Networking: A Top
Down Approach

6th edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we
only ask the following:

 If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
 If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

 All material copyright 1996-2012
 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell’s CSCI 363
Xiannong Meng

Spring 2016
Transport Layer 3-1 Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

congestion:
 informally: “too many sources sending too much

data too fast for network to handle”
 different from flow control!

 flow control: between hosts

 congestion control: hosts and network

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queueing in router buffers)

 a top-10 problem!

Principles of congestion control

Transport Layer 3-4

Causes/costs of congestion: scenario 1

 two senders, two
receivers

 one router, infinite
buffers

 output link capacity: R

 no retransmission

 maximum per-connection
throughput: R/2

unlimited shared

output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l
o
u

t

lin R/2

d
e
la

y

lin

 large delays as arrival rate, lin,
approaches capacity

Transport Layer 3-5

 one router, finite buffers

 sender retransmission of timed-out packet
 application-layer input = application-layer output: lin =

lout

 transport-layer input includes retransmissions : l*
in >=

lin

Causes/costs of congestion: scenario 2

finite shared output

link buffers

Host A

lin : original data

Host B

lout l*
in: original data, plus

retransmitted data

Transport Layer 3-6

idealization: perfect
knowledge

 sender sends only when
router buffers available

finite shared output

link buffers

lin : original data
lout l'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l
o
u

t

lin

Causes/costs of congestion: scenario 2

Host B

A

2

Transport Layer 3-7

lin : original data
lout l'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

 sender only resends if
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B

Transport Layer 3-8

lin : original data
lout l'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

 sender only resends if
packet known to be lost

R/2

R/2 lin

l
o
u
t

when sending at R/2,

some packets are

retransmissions but

asymptotic goodput

is still R/2 (why?)

A

Host B

Transport Layer 3-9

A

lin
lout l'in

copy

free buffer space!

timeout

R/2

R/2 lin

l
o
u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

Host B

Realistic: duplicates
 packets can be lost, dropped

at router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

Causes/costs of congestion: scenario 2

Transport Layer 3-10

R/2

l
o
u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

“costs” of congestion:
 more work (retrans) for given “goodput”
 unneeded retransmissions: link carries multiple copies of pkt

 decreasing goodput

R/2 lin

Causes/costs of congestion: scenario 2
Realistic: duplicates
 packets can be lost, dropped

at router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

Transport Layer 3-11

 four senders

 multihop paths

 timeout/retransmit

Q: what happens as lin and lin
’

increase ?

finite shared output

link buffers

Host A lout

Causes/costs of congestion: scenario 3

Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red lin
’ increases, all arriving

blue pkts at upper queue are
dropped, blue throughput g 0

Transport Layer 3-12

another “cost” of congestion:

 when packet dropped, any “upstream”
transmission capacity used for that packet was
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

l
o

u
t

lin
’

3

Transport Layer 3-13

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

 no explicit feedback
from network

 congestion inferred
from end-system
observed loss, delay

 approach taken by
TCP

network-assisted
congestion control:

 routers provide
feedback to end systems

 single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

explicit rate for
sender to send at

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

TCP congestion control: additive increase
multiplicative decrease

 approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

 additive increase: increase cwnd by 1 MSS every
RTT until loss detected

multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

 T
C

P
 s

e
n
d
e
r

c
o
n
g
e
s
ti
o
n
 w

in
d
o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 3-16

TCP Congestion Control: details

 sender limits transmission:

 cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

 roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

 LastByteAcked
< cwnd

sender sequence number space

rate ~ ~
cwnd

RTT
bytes/sec

Transport Layer 3-17

TCP Slow Start

 when connection begins,
increase rate
exponentially until first
loss event:
 initially cwnd = 1 MSS

 double cwnd every RTT

 done by incrementing
cwnd for every ACK
received

 summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

Transport Layer 3-18

TCP: detecting, reacting to loss

 loss indicated by timeout:
 cwnd set to 1 MSS;

window then grows exponentially (as in slow start)
to threshold, then grows linearly

 loss indicated by 3 duplicate ACKs: TCP RENO

 recv’d ACKs indicate network capable of delivering
some segments

 cwnd is cut in half window then grows linearly

 TCP Tahoe (Van Jacobson1988) always sets
cwnd to 1 (timeout or 3 duplicate acks)

4

Tahoe, Reno, and Vegas

 TCP Tahoe (~1988 Van Jacobson): BSD Unix 4.3, a.k.a.
BSD Network Release 1.0 (BNR1), additive increase and
multiplicative decrease, slow start, no fast retransmission

 TCP Reno (~1990?): BNR2, BNR1 plus fast
retransmission, header prediction (fast path for pure
ACKs and in-order packets), delayed ACKs

 TCP Vegas (~1994 Brakmo, O’Malley, and Peterson):
varying congestion window size w between a and b, based
on diff = (expected – sample) rate of transmission. If diff <
a (more capacity available), increase w by one, if diff > b
(showing congestion), decrease w by one

Transport Layer 3-19 Transport Layer 3-20

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

 Implementation:
 variable ssthresh

 on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

For metrics such as cwnd and ssthresh, check out the structures in /usr/include/netinet/tcp.h

Transport Layer 3-21

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3 cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACK dupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 3-22

TCP throughput

 avg. TCP thruput as function of window size, RTT?
 ignore slow start, assume always data to send

 W: window size (measured in bytes) where loss occurs
 avg. window size (# in-flight bytes) is ¾ W

 avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Transport Layer 3-23

TCP Futures: TCP over “long, fat pipes”

 example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput (1500 bytes = 12,000 bits seg, 100 ms can
carry 83,333 segments at 10Gbps)

 requires W = 83,333 in-flight segments

 throughput in terms of segment loss probability, L [Mathis
1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L = 2·10-10 –

a very small loss rate!

 these observations led to new versions of TCP for high-
speed [Jin 2004; RFC 3649; Kelly 2003; Ha 2008].

TCP throughput =
1.22 . MSS

RTT L

Transport Layer 3-24

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2

http://infocom2004.ieee-infocom.org/Papers/52_2.PDF
https://tools.ietf.org/html/rfc3649
http://www.cl.cam.ac.uk/research/dtg/www/publications/public/arb33/scalable_improve_hswan.pdf
http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf

5

Transport Layer 3-25

Why is TCP fair?

two competing sessions:
 additive increase gives slope of 1, as throughout increases

 multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-26

Fairness (more)

Fairness and UDP

 multimedia apps often
do not use TCP
 do not want rate

throttled by congestion
control

 instead use UDP:
 send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

 application can open
multiple parallel
connections between two
hosts

 web browsers do this

 e.g., link of rate R with 9
existing connections:
 new app asks for 1 TCP, gets rate

R/10

 new app asks for 9 TCPs, gets R/2

Examine some source code

 Linux 2.6 implementation of TCP
congestion control:
 http://lxr.free-

electrons.com/source/net/ipv4/tcp_cong.c

 Look for
 snd_cwnd

 tcp_slow_start

 tcp_cong_avoid_ai

 tcp_reno_cong_avoid

Transport Layer 3-27 Transport Layer 3-28

Chapter 3: summary

 principles behind
transport layer services:

multiplexing,
demultiplexing

 reliable data transfer

 flow control

 congestion control

 instantiation,
implementation in the
Internet
 UDP

 TCP

next:

 leaving the
network “edge”
(application,
transport layers)

 into the network
“core”

http://www.cs.fsu.edu/~baker/devices/lxr/http/source/linux/net/ipv4/tcp_cong.c
http://lxr.free-electrons.com/source/net/ipv4/tcp_cong.c
http://lxr.free-electrons.com/source/net/ipv4/tcp_cong.c
http://lxr.free-electrons.com/source/net/ipv4/tcp_cong.c

