Chapter 4 Network Layer

A note on the use of these ppt slides: We're making these slides freely available to all ((taculty, students, readers), They're in PowerPoint form so you see the animations; and can add, modify and deltee slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- ask the tollowing: I you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!) I you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material
- material. Thanks and enjoy! JFK/KWR

CAll material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell's CSCI 363 Xiannong Meng Spring 2016

Computer Networking:A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Network Layer 4-1

Chapter 4: outline

4.1 introduction				
4.2 virtual circuit and				
datagram networks				
4.3 what's inside a router				
4.4 IP: Internet Protocol				
 datagram format 				
 IPv4 addressing 				
 ICMP 				
 IDv4 				

IPv6

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet • RIP
 - KIP
 OSPF
 - OSP
 BGP
- 4.7 broadcast and multicast routing

Network Layer 4-2

The Internet network layer

host, router network layer functions:

Network Layer 4-3

IP datagram format

Review of TCP segment structure

IP fragmentation, reassembly

- network links have MTU (max. transfer size) largest possible link-level
 - frame different link types, different MTUs
- large IP datagram divided ("fragmented") within net
- one datagram becomes several datagrams
- "reassembled" only at final destination
- IP header bits used to identify, order related fragments

IP fragmentation, reassembly

Network Layer 4-7

Chapter 4: outline

- 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
- BGP
- 4.7 broadcast and multicast routing

Network Layer 4-8

IP addressing: introduction

223.1.1.

- IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 host typically has one or
 - two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

IP addressing: introduction

Subnets

*IP address:

- subnet part high order bits
- host part low order bits
- *what's a subnet?
- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

Find out subnet, IP address, and other information on your computer.

Network Layer 4-11

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network is called a subnet

223.1.1.0/24 223.1.1.1 223.1.1.2 223.1.1.2 223.1.1.4 223.1.2.9 223.1.3.2 223.1.3.2 223.1.3.9 223.1.3.

Network Layer 4-12

IP addressing: CIDR

CIDR: Classless InterDomain Routing

subnet portion of address of arbitrary length
 address format: a.b.c.d/x, where x is # bits in subnet portion of address

subnet host part 11001000 00010111 00010000 00000000

200.23.16.0/23

Network Layer 4-14

IP addresses: how to get one?

Q: How does a host get IP address?

- * hard-coded by system admin in a file
 - Windows: control-panel->network&internet -> change adapter setting->local area connections -> properties -> tcp/ipv4 or tcp/ipv6
 - UNIX: /etc/resolv.conf and /etc/named.conf, /etc/named.hosts
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

Network Layer 4-15

DHCP: Dynamic Host Configuration Protocol

goal: allow host to *dynamically* obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected)
 support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

Network Layer 4-16

DHCP packet format

op (1)	htype (1)	hlen (1)	hops (1)	
xid (4)				
secs (2)		flags (2)		
ciaddr (4)				
yiaddr (4)				
siaddr (4)				
giaddr (4)				
chaddr (16)				
sname (64)				
file (128)				
options (312)				

http://www.tarunz.org/~vassilii/TAU/protocols/dhcp/frame.htm

RFC 2131: http://www.ietf.org/rfc/rfc2131.txt

Network Layer 4-17

DHCP client-server scenario

Network Layer 4-18

DHCP client-server scenario

DHCP: example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

Network Layer 4-21

Network Laver 4-19

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

Network Layer 4-20

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router

Network Layer 4-22

DHCP: Wireshark output (home LAN)

Message yrac Bard Reuses(1) Hardware address length: 6 Hops 0 Transaction 1D: ostoba110 Secondr eliques(2) Berndr Bardware (2) Berndr Bardware (2) Berndr Bardware (2) Berndr McC address: (0.0.0) (0.0.0) Net server IP address: (0.0.0) (0.0.0) Net server IP address: (0.0.0) (0.0.0) Set McC address: Wistrom, 23:68:8a (00:16:d3:23:68:8a) Oxf III: and or give Magic cookie: (0K) Dott III: (0) Client Identifier 20:28:88:4 (0) Client IMAC address: Wistrom, 23:68:8a (00:16:d3:23:68:8a) Optic:: (16:d3:1) DBCP Message Type = DHCP Request Optic:: (16:d3:1) DBCP Message Type = DHCP Request Optic:: (16:d3:1) BBCP Message Type = DHCP Request Optic:: (16:d3:1) Requested IP Address: 192:168:101 Optic:: (16:d3:1) Requested IP Address: 192:168:101 Optic:: (16:d3:1) Requested IP Address: 192:168:101 Optic:: (16:d3:1) Bure Offord Sec2EF121F1282 1 Suburet Mask; 15 = Domain Name 3 = Router 6 Domain Name Server 44 = NABIDS over TCP/IP Name Server

Message type: Boot Reply (2) Hardware type: Ethernet Hogs: 0 address length: 6 Hogs: 0 boots address length: 6 Hogs: 0 boots address for the set of th

Network Layer 4-23