Chapter 4 Network Layer

A note on the use of these ppt slides: We're making these slides freely available to all (floculty, students, readers). They're in PowerPoint (cm so you see the animations; and can add, modify, they dovisally represent a for d work on our part. In return for use, we only ask the following: I you use these slides (e.g., in a class) that you method their source (after all, we'd like people to use our book) I you you show a visities on a ww slite, that you method their source for (or perhaps identical to) our slides, and note our copyright of this material.

- Thanks and enjoy! JFK/KWR

CAll material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell's CSCI 363 Xiannong Meng Spring 2016

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Application Layer 2-1

Network Laver 4-3

Network Layer 4-5

Chapter 4: outline

- 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what's inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6
 - 4.5 routing algorithms
 - link state
 - distance vector
 - hierarchical routing 4.6 routing in the Internet
 - RIP
 - OSPE
 - BGP
 - 4.7 broadcast and multicast routing

Network Laver 4-2

Intra-AS Routing

- also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol (Distance) Vector)
 - OSPF: Open Shortest Path First (Link State)
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

RIP (Routing Information Protocol)

- included in BSD-UNIX distribution in 1982
- distance vector algorithm
 - distance metric: # hops (max = 15 hops), each link has cost 1 DVs exchanged with neighbors every 30 sec in response message (aka advertisement) in UDP packet
 - each advertisement: list of up to 25 destination subnets (in IP addressing sense)

RIP: link failure, recovery

if no advertisement heard after 180 sec -->

- neighbor/link declared dead
- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- advertisements sent in UDP packets, periodically repeated

Network Layer 4-8

RIP current status

In most current networking environments, RIP is not the preferred choice for routing as its time to converge and scalability are poor compared to EIGRP, OSPF, or IS-IS (the latter two being link-state routing protocols), and (without RMTI) a hop limit severely limits the size of network it can be used in. (quote from Wikipedia

http://en.wikipedia.org/wiki/Routing_Information_ Protocol)

Network Layer 4-9

Network Laver 4-7

OSPF (Open Shortest Path First)

- * "open": publicly available
- * uses link state algorithm
 - LS packet dissemination
 - topology map at each node
 - route computation using Dijkstra's algorithm
- * OSPF advertisement carries one entry per neighbor
- * advertisements flooded to entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP
- IS-IS routing protocol: nearly identical to OSPF (IS-IS: Intermediate System to Intermediate System), except that it is under the OSI-ISO 7-layer model

Network Layer 4-10

OSPF "advanced" features (not in RIP)

- security: all OSPF messages authenticated (to prevent malicious intrusion)
- multiple same-cost paths allowed (only one path in RIP)
- for each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort ToS; high for real time ToS)
- * integrated uni- and multicast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- hierarchical OSPF in large domains.

Network Layer 4-11

Network Layer 4-12

Hierarchical OSPF

- * two-level hierarchy: local area, backbone.
 - Iink-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- * boundary routers: connect to other AS' s.

Network Layer 4-13

Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): the de facto inter-domain routing protocol
 - "glue that holds the Internet together"
- BGP provides each AS a means to:
 - eBGP: obtain subnet reachability information from neighboring ASs. ('e' for extended)
 - iBGP: propagate reachability information to all ASinternal routers. ('i' for internal)
 - determine "good" routes to other networks based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: "1 am here"
- * BGP use TCP to communicate with each other

Network Layer 4-14

BGP basics

- BGP session: two BGP routers ("peers") exchange BGP messages:
 - advertising paths to different destination network prefixes ("path vector" protocol)
 - exchanged over semi-permanent TCP connections
- when AS3 advertises a prefix to AS1: (prefix eg: 132.84.3.12/18)
 AS3 promises it will forward datagrams towards that prefix
 - AS3 can aggregate prefixes in its advertisement

BGP basics: distributing path information

- using eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - Ic can then use iBGP do distribute new prefix info to all routers in AS1
 - Ib can then re-advertise new reachability info to AS2 over Ib-to-2a eBGP session
- when router learns of new prefix, it creates entry for prefix in its forwarding table.

Path attributes and BGP routes

- advertised prefix includes BGP attributes
 prefix + attributes = "route"
- * two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: e.g., AS 67, AS 17
 - NEXT-HOP: indicates specific internal-AS router to nexthop AS. (may be multiple links from current AS to nexthop-AS)
- gateway router receiving route advertisement uses import policy to accept/decline
 - e.g., never route through AS x
 - policy-based routing

Network Layer 4-17

BGP route selection

- router may learn about more than 1 route to destination AS, selects route based on:
 - local preference value attribute: policy decision
 shortest AS-PATH
 - 2. Shortest AS-PATE
 - 3. closest NEXT-HOP router: hot potato routing
 - 4. additional criteria

BGP messages

- BGP messages exchanged between peers over TCP connection
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE: keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Network Layer 4-19

BGP routing policy

- A,B,C are provider networks
- * X,W,Y are customer (of provider networks)
- * X is dual-homed: attached to two networks
 - X does not want to route from B via X to C
 - .. so X will not advertise to B a route to C

Network Layer 4-20

BGP routing policy (2) Iegend: provider network customer network: customer network: A advertises path AW to B B advertises path BAW to X Should B advertise path BAW to C? No way! B gets no "revenue" for routing CBAW since neither W nor C are B's customers B wants to rotree only to/from its customers!

Network Laver 4-21

Why different Intra-, Inter-AS routing ?

policy:

- inter-AS: admin wants control over how its traffic routed, who routes through its net.
- intra-AS: single admin, so no policy decisions needed scale;

uic.

 $\diamond\,$ hierarchical routing saves table size, reduced update traffic

performance:

- * intra-AS: can focus on performance
- inter-AS: policy may dominate over performance

Network Layer 4-22

Some interesting router statistics

- http://www.cidr-report.org/as2.0/
- http://mrtg.net.princeton.edu/statistics/routers.ht ml