Chapter 5 Link Layer

A note on the use of these ppt slides: We're making these sides freely available to all (faculty, students, readers). They're in Proverfort form so you see the animations; and can add, modify and delete sides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

 If you use these slicks (e.g., in a class) that you mention their source (after all, we'd like people to use our book)
 If you post any slicks on a www slis, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

CAll material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell's CSCI 363 Xiannong Meng Spring 2016

Computer Networking:A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Link Layer 5-1

Link layer, LANs: outline

- 5.1 introduction, services 5.5 link virtualization:
- 5.2 error detection, correction
- 5.3 multiple access protocols

5.4 LANs

- addressing, ARPEthernet
- switches
- VLANS

MPLS

5.6 data center

networking

5.7 a day in the life of a web request

Link Layer 5-2

Multiple access links, protocols

two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC (Hybrid Fiber-Coaxial)
 - 802.11 wireless LAN

Link Layer 5-3

Multiple access protocols

- * single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 no out-of-band channel for coordination

Link Layer 5-4

An ideal multiple access protocol

given: broadcast channel of rate R bps desiderata:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots

4. simple

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 allocate piece to node for exclusive use

random access

- channel not divided, allow collisions
- "recover" from collisions
- "taking turns "
- nodes take turns, but nodes with more to send can take longer turns

Link Layer 5-5

Link Layer 5-6

Channel partitioning MAC protocols: TDMA

- TDMA: time division multiple access
- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

•	_ 6-slot frame	6-slot frame —		
1	3 4	1	3 4	

Link Layer 5-7

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- * channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- * two or more transmitting nodes \rightarrow "collision",
- * random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Link Layer 5-9

"Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, I/N bandwidth allocated even if only 1 active node!
- random access MAC protocols
 - efficient at low load: single node can fully utilize
 - channel
 - high load: collision overhead

examples include token ring and token passing

"taking turns" protocols

look for best of both worlds!

Link Layer 5-10

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no a priori coordination among nodes
- * two or more transmitting nodes \rightarrow "collision",
- * random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Link Layer 5-11

Slotted ALOHA

assumptions:

all frames same size

- time divided into equal size slots (time to transmit I frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next time slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Link Layer 5-12

Link Layer 5-13

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- prob that given node has success in a slot = p(1p)^{N-1}
- prob that any node has a success = Np(1-p)^{N-1}

- max efficiency: find p* that maximizes Np(I-p)^{N-I}
- for many nodes, take limit of Np*(1-p*)^{N-1} as N goes to infinity, gives:

max efficiency = 1/e = .37

Link Layer 5-14

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- collision probability increases:
- frame sent at t_0 collides with other frames sent in $[t_0\text{-}1,t_0\text{+}1]$

Pure ALOHA efficiency

$$\begin{split} P(success \ by \ given \ node) &= P(node \ transmits) \cdot \\ P(no \ other \ node \ transmits \ in \ [t_0-1,t_0] \\ P(no \ other \ node \ transmits \ in \ [t_0,t_{0+1}] \end{split}$$

= $p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$ = $p \cdot (1-p)^{2(N-1)}$

... choosing optimum p and then letting $N \rightarrow \infty$

= I/(2e) = .18

as expected, even worse than slotted Aloha!

Link Layer 5-16