Chapter 5 Link Layer

A note on the use of these ppt slides: We're making these sides freely available to all (faculty, students, readers). They're in Proversion form so you see the animations: and can add, modify and delete sides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
If you pot any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

CAll material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

The course notes are adapted for Bucknell's CSCI 363 Xiannong Meng Spring 2016

Computer Networking:A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Link Layer 5-1

CSMA (carrier sense multiple access)

CSMA: listen before transmit: if channel sensed idle: transmit entire frame

- * if channel sensed busy, defer transmission
- human analogy: don't interrupt others!

Link Layer 5-2

CSMA collisions

- collisions can still occur: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

CSMA/CD (collision detection)

Link Layer 5-5

CSMA/CD (collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

Link Laver 5-4

Ethernet CSMA/CD algorithm

- I. NIC receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame !
- If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K⁵12 bit times, returns to Step 2
 - longer backoff interval if more collisions

Link Layer 5-6

CSMA/CD efficiency (1)

- t_{prop} = max prop delay between 2 nodes in LAN
- t_{trans} = time to transmit max-size frame

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{tran.}}$$

- * efficiency goes to I
 - as t_{prop} goes to 0, or
 - as t_{trans} goes to infinity
- better performance than ALOHA: and simple, cheap, decentralized!

Schwartz (1987), page 445 says e = 1/(1+6.44 a), derivation from probability. Link Laver 5-7

CSMA/CD efficiency (2)

- Performance of the CSMA/CD can be determined by one single number! 1
- Let a = t_{pro} / t_{trans}

1 + 5aBy Simon Lam of UT Austin (1979):

efficiency =

- Some examples:
 - a = 0.1, efficiency = 0.667
- a = 0.01, efficiency = 0.952
- How to make a small, thus higher efficiency?
 - Shorter cables \rightarrow smaller t_{pro}
 - Slower(!!!) network \rightarrow large t_{rans}
 - Larger packets \rightarrow large t_{rans}

Link Layer 5-8

Taking turns" MAC protocols

channel partitioning MAC protocols:

- share channel efficiently and fairly at high load
- inefficient at low load: delay in channel access, I/N bandwidth allocated even if only I active node!
- random access MAC protocols
 - efficient at low load: single node can fully utilize channel
 - high load: collision overhead

"taking turns" protocols

look for best of both worlds!

Link Laver 5-9

Link Layer 5-11

slaves

polling:

- master node "invites" slave nodes to transmit in turn
- typically used with "dumb" slave devices
- concerns:
 - polling overhead
 - latency
 - single point of failure (master)

Link Laver 5-10

master

Taking turns" MAC protocols

- ✤ control token passed from one node to next sequentially.
- token message
- concerns:
 - token overhead
 - Iatency
 - single point of failure (token)

(nothing to send) Cable access network

Cable access network

DOCSIS: data over cable service interface spec

- * FDM over upstream, downstream frequency channels
- * TDM upstream: some slots assigned, some have contention
 - downstream MAP frame: assigns upstream slots
 - request for upstream slots (and data) transmitted random access (binary backoff) in selected slots

Link Layer 5-13

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - polling from central site, token passing
 - bluetooth, FDDI, token ring
- hybrid DOCSIS combines random access, TDMA, and FDMA

Link Layer 5-14