
CSCI 475 Learning Java Exercise #3 Fall 2004

Developing GUIs in Java

Objectives:

1. To explore GUIs in Java.

2. To write Java applications that have windows, simple graphics, GUI components, and menus.

3. To use Java listeners for event handling.

Preparation: Before Exercise read the following chapters in Java: How to Program by Deitel and Deitel,
fourth edition: Chapters 11, 12 and 13 (12, 13, 14 in fifth,; 11, 12, 22 in sixth).

Assignment:

This Exercsie gets you started in writing window-based Java applications, i. e., GUIs.

1. Java 1.5
To use Java 1.5, you need to change your .cshrc file in your home directory. In your path envi-
ronment variable, change

/usr/local/jdk-1.4/bin

to

/usr/local/jdk-1.5/bin

If you are using the sixth edition of Java text, we strongly urge you to use Java 1.5.

2. The Java API:
Java is a smaller and cleaner language than C++. Chapters 1-10 and 14 (Chapers 1-11, and 15 in
fifith; 1-10, 13, and 29 in sixth) in the Java text cover most of the language except threads (Chapter
15; 16 in fifth; 23 in sixth). The reason why programmers like Java is the HUGE standard Application
Programming Interface (API). Sun’s API includes classes for developing Graphical User Interfaces
(GUIs), multimedia, networking, web-based computing, database connectivity, distributed objects
(RMI and CORBA), security and others. This is the fun part of programming in Java!

Take a few minutes and explore Sun’s API for Java 2 (version 1.4) at URL:

http://java.sun.com/j2se/1.4/docs/api/index.html

Or

Take a few minutes and explore Sun’s API for Java 2 (version 1.5) at URL:

http://java.sun.com/j2se/1.5/docs/api/index.html

Many other Java APIs are available from third party sources. You only need to search the Web with
“java api”.

CSCI 475 Fall 2004 1 Learning Java Exercises #3

3. A Window-based Java Application:
Below is the bare bones of a Java application that opens a window. The application extends JFrame
which is part of the swing API. See pages 503-507 fourth (starting 613 in fifth; 515 in sixth) edition
of Java text.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LJ3Ex3 extends JFrame {

public LJ3Ex3()
{

// super must be first line in constructor
super("Window for LJ3Ex3"); // title for window

}

public static void main(String args[])
{

LJ3Ex3 w = new LJ3Ex3();

// code to handle window event to allow proper "Close"
w.addWindowListener(

new WindowAdapter() {
public void windowClosing(WindowEvent e)
{

System.exit(0);
}

}
);

// set size of window in pixels
w.setSize(600, 400);
w.setVisible(true);

}
}

Since JFrame is the superclass to LJ3Ex3, the method super() passes the string to JFrame’s con-
structor. If you invoke a super() method, it MUST be the first line in a constructor.

Note that the structure of the program uses the common design pattern described in last week’s Exer-
cise. We told you we would use it!

Don’t try to understand the addWindowListener code. It is needed for the window to close when
the user selects “Close” from the standard CDE menu. If you must know, see pages 501-513 fourth
(475-482 in fifth; 1011 in sixth) edition of Java text.

Copy the code to a file, compile and run it.

Note the use of System.exit(0);. Even if you don’t have a window listener but use graphics in
your Java program, you should have a System.exit(0);. Without the System.exit(0);, the
window will close but the running java process will not quit.

The above skelton is an excellent start for any window-based Java application.

CSCI 475 Fall 2004 2 Learning Java Exercises #3

4. Adding GUI Components to the Window:
GUIs are built by adding GUI components to a window. Some possible components are text fields,
labels, buttons, check boxes and radio buttons. See Chapter 12 fourth (13 in fifth; 11 in sixth) edition
of Java text.

Copy the file from Exercise 3 to a new file and in the constructor set the layout for the window to
FlowLayout. To the window add two JLabel objects initialized to some text.

FlowLayout says to place the components one after the other until the components no longer fit across
the window then start a new row. Layouts in Java take a little getting use to. The idea is that when a
user resizes the window the components flow around to fit the new window size.

After displaying the two JLabel objects, adjust the size and shape of the window to see the behavior.

5. Adding JTextField and a Listener:
In this exercise we will add a listener to capture the text typed in a JTextField. Listeners are the way
Java’s API does event handling. See Chapter 12 (13 in fifth; 11 in sixth) edition of Java text.

Copy the file from Exercise 4 to a new file. Add a JTextField object of width of 20 characters to the
container. Create a new TextFieldHandler object and add the JTextField object to ActionListener.
See page 657 fourth (622 in fifth; 523 in sixth) edition of Java text. Create your own inner class to
handle the event and call it TextFieldHandler. Display what is typed in the JTextField object in the
shell window using System.out.println().

6. Adding a Menu:
Menus are an important part of GUIs. See section 13.8 starting on page 747 fourth (section 14.7
starting on page 696 in fifth; section 22.4 starting on page 1011 in sixth) edition of Java text.

Copy the file from Exercise 5 into a new file. Add a menu bar with the label “File” that has an “Exit”
item on it to quit the program.

When you run it, notice that the new menu bar shifts the JLabel and JTextField components down to
make room.

7. Adding Simple Graphics to the Window:
Drawing lines, rectangles, and circles is easy in Java but a bit tricker if you want to draw as well as
have other graphical components on the screen. See Chapter 11 fourth (Chapter 12 in fifth and sixth)
edition of Java text.

Copy the file from Exercise 6 to a new file.

You should avoid the older approach of AWT which used the paint() method. We strongly urge you
to use the newer and much improved swing approach which uses paintComponent(). For example, if
you have a Java program with an animation, paintComponent() will refresh the screen automatically
for you while paint() does not.

To use paintComponent(), you must create a JPanel object. A JPanel creates a drawing area for
graphics. See pages 158-160 in sixth edition. A good way to do this is to create a second file with
a class that extends the JPanel class, e.g., MyJPanel. Inside this extended class insert your paint-
Component() method. You will need to add super.paintComponent(g); as the first line of your
paintComponent() method.

Add lines in the paintComponent() method to display a blue rectangle and some red text. See Chapter
11 (Chapter 12 in fifth and sixth) edition of Java text for details.

BEFORE you create an object of MyJPanel and add it to the window, you need to be careful with
your Java layout. In Java the default layout is BorderLayout, which has five regions, NORTH (top),

CSCI 475 Fall 2004 3 Learning Java Exercises #3

SOUTH (bottom), EAST (right), WEST (left) and CENTER. If you don’t specify when you add a
component, it goes in the CENTER. If you add two components to the CENTER, the second over-
writes the second. It is very easy to do this and find yourself cursing “Where in the Heck is my
drawing?”

Since JPanels and FlowLayout don’t seem to get along, change your program to use BorderLayout
and place the panel in the CENTER, and the two JLabels and JTextField to NORTH, EAST, and
SOUTH.

To create a line border around the panel, use the following line right after you create the panel.

panel.setBorder(BorderFactory.createLineBorder(Color.black));

When you run your paintComponent() method you override the paintComponent() method in the
superclass JPanel. JPanel automatically calls the paintComponent() method after creating the win-
dow and after any expose window event. Your Java window receives an expose window event when
the window is minimized (made an icon) and then maximized (icon opened). An expose event also
happens when the window is redrawn after another window has overlapped it. Try both of these
situations to see what happens.

Hand in

For Exercise 7, hand in the java code and a snapshot of the screen. Use the Sun tool snapshot to
take a snapshot of a window. Print the java code using the print alias set up in Learning Java Exercise
1.

CSCI 475 Fall 2004 4 Learning Java Exercises #3

