
N
Using the
Debugger

O B J E C T I V E S
In this appendix you will learn:

p To set breakpoints to debug applications.

p To use the run command to run an application through
the debugger.

p To use the stop command to set a breakpoint.

p To use the cont command to continue execution.

p To use the print command to evaluate expressions.

p To use the set command to change variable values
during program execution.

p To use the step, step up and next commands to
control execution.

p To use the watch command to see how a field is
modified during program execution.

p To use the clear command to list breakpoints or
remove a breakpoint.

And so shall I catch the fly.
—William Shakespeare

We are built to make
mistakes, coded for error.
—Lewis Thomas

What we anticipate seldom
occurs; what we least expect
generally happens.
—Bejamin Disraeli

He can run but he can’t hide.
—Joe Louis

It is one thing to show a man
that he is in error, and
another to put him in
possession of truth.
—John Locke

1516 Chapter N Using the Debugger

O
u

tl
in

e

N.1 Introduction
In Chapter 2, you learned that there are two types of errors—syntax errors and logic er-
rors—and you learned how to eliminate syntax errors from your code. Logic errors do not
prevent the application from compiling successfully, but they do cause an application to
produce erroneous results when it runs. The JDK 5.0 includes software called a debugger
that allows you to monitor the execution of your applications so you can locate and re-
move logic errors. The debugger will be one of your most important application develop-
ment tools. Many IDEs provide their own debuggers similar to the one included in the
JDK or provide a graphical user interface to the JDK’s debugger.

This appendix demonstrates key features of the JDK’s debugger using command-line
applications that receive no input from the user. The same debugger features discussed
here can be used to debug applications that take user input, but debugging such applica-
tions requires a slightly more complex setup. To focus on the debugger features, we have
opted to demonstrate the debugger with simple command-line applications involving no
user input. We provide instructions for debugging other types of applications on our Web
site at www.deitel.com/books/jhtp6/index.html. You can also find more information
on the Java debugger at java.sun.com/j2se/5.0/docs/tooldocs/windows/jdb.html.

N.2 Breakpoints and the run, stop, cont and print
Commands
We begin our study of the debugger by investigating breakpoints, which are markers that
can be set at any executable line of code. When application execution reaches a breakpoint,
execution pauses, allowing you to examine the values of variables to help determine wheth-
er logic errors exist. For example, you can examine the value of a variable that stores the
result of a calculation to determine whether the calculation was performed correctly. Note
that setting a breakpoint at a line of code that is not executable (such as a comment) causes
the debugger to display an error message.

To illustrate the features of the debugger, we use application AccountTest (Fig. N.1),
which creates and manipulates an object of class Account (Fig. 3.13). Execution of
AccountTest begins in main (lines 7–24). Line 9 creates an Account object with an initial
balance of $50.00. Recall that Account’s constructor accepts one argument, which speci-
fies the Account’s initial balance. Lines 12–13 output the initial account balance using
Account method getBalance. Line 15 declares and initializes a local variable deposit-

Amount. Lines 17–19 then print depositAmount and add it to the Account’s balance using

N.1 Introduction
N.2 Breakpoints and the run, stop, cont and print Commands
N.3 The print and set Commands
N.4 Controlling Execution Using the step, step up and next Commands
N.5 The watch Command
N.6 The clear Command
N.7 Wrap-Up

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises

N.2 Breakpoints and the run, stop, cont and print Commands 1517

its credit method. Finally, lines 22–23 display the new balance. [Note: The Appendix N
examples directory contains a copy of Account.java identical to the one in Fig. 3.13.]

In the following steps, you will use breakpoints and various debugger commands to
examine the value of the variable depositAmount declared in AccountTest (Fig. N.1).

1. Opening the Command Prompt window and changing directories. Open the
Command Prompt window by selecting Start > Programs > Accessories > Com-
mand Prompt. Change to the directory containing the appendix’s examples by
typing cd C:\examples\debugger [Note: If your examples are in a different di-
rectory, use that directory here.]

2. Compiling the application for debugging. The Java debugger works only with
.class files that were compiled with the -g compiler option, which generates in-
formation that is used by the debugger to help you debug your applications.
Compile the application with the -g command-line option by typing javac -g

AccountTest.java Account.java. Recall from Chapter 2 that this command
compiles both AccountTest.java and Account.java. The command java -g

*.java compiles all of the working directory’s .java files for debugging.

1 // Fig. N.1: AccountTest.java
2 // Create and manipulate an Account object.
3
4 public class AccountTest
5 {
6 // main method begins execution
7 public static void main(String args[])
8 {
9 Account account = new Account(50.00); // create Account object

10
11 // display initial balance of Account object
12 System.out.printf("initial account balance: $%.2f\n",
13 account.getBalance());
14
15 double depositAmount = 25.0; // deposit amount
16
17 System.out.printf("\nadding %.2f to account balance\n\n",
18 depositAmount);
19 account.credit(depositAmount); // add to account balance
20
21 // display new balance
22 System.out.printf("new account balance: $%.2f\n",
23 account.getBalance());
24 } // end main
25
26 } // end class AccountTest

initial account balance: $50.00

adding 25.00 to account balance

new account balance: $75.00

Fig. N.1 | AccountTest class creates and manipulates an Account object.

1518 Appendix N Using the Debugger

3. Starting the debugger. In the Command Prompt, type jdb (Fig. N.2). This com-
mand will start the Java debugger and enable you to use its features. [Note: We
modified the colors of our Command Prompt window to allow us to highlight in
yellow the user input required by each step.]

4. Running an application in the debugger. Run the AccountTest application
through the debugger by typing run AccountTest (Fig. N.3). If you do not set
any breakpoints before running your application in the debugger, the application
will run just as it would using the java command.

5. Restarting the debugger. To make proper use of the debugger, you must set at
least one breakpoint before running the application. Restart the debugger by typ-
ing jdb.

6. Inserting breakpoints in Java. You set a breakpoint at a specific line of code in
your application. The line numbers used in these steps are from the source code
in Fig. N.1. Set a breakpoint at line 12 in the source code by typing stop at

AccountTest:12 (Fig. N.4). The stop command inserts a breakpoint at the line
number specified after the command. You can set as many breakpoints as neces-
sary. Set another breakpoint at line 19 by typing stop at AccountTest:19

(Fig. N.4). When the application runs, it suspends execution at any line that con-
tains a breakpoint. The application is said to be in break mode when the debug-
ger pauses the application’s execution. Breakpoints can be set even after the
debugging process has begun. Note that the debugger command stop in, fol-
lowed by a class name, a period and a method name (e.g., stop in

Account.credit) instructs the debugger to set a breakpoint at the first executable
statement in the specified method. The debugger pauses execution when pro-
gram control enters the method.

Fig. N.2 | Starting the Java debugger.

Fig. N.3 | Running the AccountTest application through the debugger.

N.2 Breakpoints and the run, stop, cont and print Commands 1519

7. Running the application and beginning the debugging process. Type run

AccountTest to execute your application and begin the debugging process
(Fig. N.5). Note that the debugger prints text indicating that breakpoints were
set at lines 12 and 19. The debugger calls each breakpoint a “deferred breakpoint”
because each was set before the application began running in the debugger. The
application pauses when execution reaches the breakpoint on line 12. At this
point, the debugger notifies you that a breakpoint has been reached and it dis-
plays the source code at that line (12). That line of code is the next statement that
will execute.

8. Using the cont command to resume execution. Type cont. The cont command
causes the application to continue running until the next breakpoint is reached
(line 19), at which point the debugger notifies you (Fig. N.6). Note that Ac-
countTest’s normal output appears between messages from the debugger.

9. Examining a variable’s value. Type print depositAmount to display the current
value stored in the depositAmount variable (Fig. N.7). The print command al-
lows you to peek inside the computer at the value of one of your variables. This
command will help you find and eliminate logic errors in your code. Note that
the value displayed is 25.0—the value assigned to depositAmount in line 15 of
Fig. N.1.

10. Continuing application execution. Type cont to continue the application’s exe-
cution. There are no more breakpoints, so the application is no longer in break
mode. The application continues executing and eventually terminates (Fig. N.8).
The debugger will stop when the application ends.

Fig. N.4 | Setting breakpoints at lines 12 and 19.

Fig. N.5 | Restarting the AccountTest application.

Next line of code to execute

Breakpoint is reached

1520 Appendix N Using the Debugger

In this section, you learned how to enable the debugger and set breakpoints so that you
can examine variables with the print command while an application is running. You also
learned how to use the cont command to continue execution after a breakpoint is reached.

N.3 The print and set Commands
In the preceding section, you learned how to use the debugger’s print command to exam-
ine the value of a variable during program execution. In this section, you will learn how to
use the print command to examine the value of more complex expressions. You will also
learn the set command, which allows the programmer to assign new values to variables.

For this section, we assume that you have followed Step 1 and Step 2 in Section N.2
to open the Command Prompt window, change to the directory containing this appendix’s
examples (e.g., C:\examples\debugger) and compile the AccountTest application (and
class Account) for debugging.

1. Starting debugging. In the Command Prompt, type jdb to start the Java debugger.

2. Inserting a breakpoint. Set a breakpoint at line 19 in the source code by typing
stop at AccountTest:19.

3. Running the application and reaching a breakpoint. Type run AccountTest to
begin the debugging process (Fig. N.9). This will cause AccountTest’s main to
execute until the breakpoint at line 19 is reached. This suspends application exe-
cution and switches the application into break mode. At this point, the state-
ments in lines 9–13 created an Account object and printed the initial balance of

Fig. N.6 | Execution reaches the second breakpoint.

Fig. N.7 | Examining the value of variable depositAmount.

Fig. N.8 | Continuing application execution and exiting the debugger.

Another breakpoint is reached

N.3 The print and set Commands 1521

the Account obtained by calling its getBalance method. The statement in line
15 (Fig. N.1) declared and initialized local variable depositAmount to 25.0. The
statement in line 19 is the next statement that will execute.

4. Evaluating arithmetic and boolean expressions. Recall from Section N.2 that once
the application has entered break mode, you can explore the values of the applica-
tion’s variables using the debugger’s print command. You can also use the print
command to evaluate arithmetic and boolean expressions. In the Command
Prompt window, type print depositAmount - 2.0. Note that the print command
returns the value 23.0 (Fig. N.10). However, this command does not actually
change the value of depositAmount. In the Command Prompt window, type print
depositAmount == 23.0. Expressions containing the == symbol are treated as
boolean expressions. The value returned is false (Fig. N.10) because deposit-

Amount does not currently contain the value 23.0—depositAmount is still 25.0.

5. Modifying values. The debugger allows you to change the values of variables dur-
ing the application’s execution. This can be valuable for experimenting with dif-
ferent values and for locating logic errors in applications. You can use the
debugger’s set command to change the value of a variable. Type set depositA-

mount = 75.0. The debugger changes the value of depositAmount and displays its
new value (Fig. N.11).

Fig. N.9 | Application execution suspended when debugger reaches the breakpoint at line 19.

Fig. N.10 | Examining the values of an arithmetic and boolean expression.

Fig. N.11 | Modifying values.

1522 Appendix N Using the Debugger

6. Viewing the application result. Type cont to continue application execution.
Line 19 of AccountTest (Fig. N.1) executes, passing depositAmount to Account

method credit. Method main then displays the new balance. Note that the result
is $125.00 (Fig. N.12). This shows that the preceding step changed the value of
depositAmount from its initial value (25.0) to 75.0.

In this section, you learned how to use the debugger’s print command to evaluate
arithmetic and boolean expressions. You also learned how to use the set command to
modify the value of a variable during your application’s execution.

N.4 Controlling Execution Using the step, step up and
next Commands
Sometimes you will need to execute an application line by line to find and fix errors. Walk-
ing through a portion of your application this way can help you verify that a method’s code
executes correctly. In this section, you will learn how to use the debugger for this task. The
commands you learn in this section allow you to execute a method line by line, execute all
the statements of a method at once or execute only the remaining statements of a method
(if you have already executed some statements within the method).

Once again, we assume you are working in the directory containing this appendix’s
examples and have compiled for debugging with the -g compiler option.

1. Starting the debugger. Start the debugger by typing jdb.

2. Setting a breakpoint. Type stop at AccountTest:19 to set a breakpoint at line 19.

3. Running the application. Run the application by typing run AccountTest. After
the application displays its two output messages, the debugger indicates that the
breakpoint has been reached and displays the code at line 19 (Fig. N.13). The de-
bugger and application then pause and wait for the next command to be entered.

4. Using the step command. The step command executes the next statement in the
application. If the next statement to execute is a method call, control transfers to
the called method. The step command enables you to enter a method and study
the individual statements of that method. For instance, you can use the print

and set commands to view and modify the variables within the method. You will
now use the step command to enter the credit method of class Account
(Fig. 3.13) by typing step (Fig. N.14). The debugger indicates that the step has
been completed and displays the next executable statement—in this case, line 21
of class Account (Fig. 3.13).

Fig. N.12 | Output displayed after the debugging process.

New account balance based on altered
value of variable depositAmount

N.4 Controlling Execution Using the step, step up and next Commands 1523

5. Using the step up command. After you have stepped into the credit method,
type step up. This command executes the remaining statements in the method
and returns control to the place where the method was called. The credit meth-
od contains only one statement to add the method’s parameter amount to in-
stance variable balance. The step up command executes this statement, then
pauses before line 22 in AccountTest. Thus, the next action to occur will be to
print the new account balance (Fig. N.15). In lengthy methods, you may want
to look at a few key lines of code, then continue debugging the caller’s code. The
step up command is useful for situations in which you do not want to continue
stepping through the entire method line by line.

6. Using the cont command to continue execution. Enter the cont command
(Fig. N.16) to continue execution. The statement at lines 22–23 executes, dis-
playing the new balance, then the application and the debugger terminate.

7. Restarting the debugger. Restart the debugger by typing jdb.

8. Setting a breakpoint. Breakpoints persist only until the end of the debugging ses-
sion in which they are set—once the debugger exits, all breakpoints are removed.

Fig. N.13 | Reaching the breakpoint in the AccountTest application.

Fig. N.14 | Stepping into the credit method.

Fig. N.15 | Stepping out of a method.

1524 Appendix N Using the Debugger

(In Section N.6, you’ll learn how to manually clear a breakpoint before the end
of the debugging session.) Thus, the breakpoint set for line 19 in Step 2 no longer
exists upon restarting the debugger in Step 7. To reset the breakpoint at line 19,
once again type stop at AccountTest:19.

9. Running the application. Type run AccountTest to run the application. As in
Step 3, AccountTest runs until the breakpoint at line 19 is reached, then the de-
bugger pauses and waits for the next command (Fig. N.17).

10. Using the next command. Type next. This command behaves like the step com-
mand, except when the next statement to execute contains a method call. In that
case, the called method executes in its entirety and the application advances to
the next executable line after the method call (Fig. N.18). Recall from Step 4 that
the step command would enter the called method. In this example, the next

command causes Account method credit to execute, then the debugger pauses
at line 22 in AccountTest.

Fig. N.16 | Continuing execution of the AccountTest application.

Fig. N.17 | Reaching the breakpoint in the AccountTest application.

Fig. N.18 | Stepping over a method call.

N.5 The watch Command 1525

11. Using the exit command. Use the exit command to end the debugging session
(Fig. N.19). This command causes the AccountTest application to immediately
terminate rather than execute the remaining statements in main. Note that when
debugging some types of applications (e.g., GUI applications), the application
continues to execute even after the debugging session ends.

In this section, you learned how to use the debugger’s step and step up commands
to debug methods called during your application’s execution. You saw how the next com-
mand can be used to step over a method call. You also learned that the exit command
ends a debugging session.

N.5 The watch Command
In this section, we present the watch command, which tells the debugger to watch a field.
When that field is about to change, the debugger will notify you. In this section, you will
learn how to use the watch command to see how the Account object’s field balance is
modified during the execution of the AccountTest application.

As in the preceding two sections, we assume that you have followed Step 1 and Step 2
in Section N.2 to open the Command Prompt, change to the correct examples directory
and compile classes AccountTest and Account for debugging (i.e., with the -g compiler
option).

1. Starting the debugger. Start the debugger by typing jdb.

2. Watching a class’s field. Set a watch on Account’s balance field by typing watch

Account.balance (Fig. N.20). You can set a watch on any field during execution
of the debugger. Whenever the value in a field is about to change, the debugger
enters break mode and notifies you that the value will change. Watches can be
placed only on fields, not on local variables.

3. Running the application. Run the application with the command run Account-

Test. The debugger will now notify you that field balance’s value will change
(Fig. N.21). When the application begins, an instance of Account is created with
an initial balance of $50.00 and a reference to the Account object is assigned to
the local variable account (line 9, Fig. N.1). Recall from Fig. 3.13 that when the

Fig. N.19 | Exiting the debugger.

Fig. N.20 | Setting a watch on Account’s balance field.

1526 Appendix N Using the Debugger

constructor for this object runs, if parameter initialBalance is greater than 0.0,
instance variable balance is assigned the value of parameter initialBalance.
The debugger notifies you that the value of balance will be set to 50.0.

4. Adding money to the account. Type cont to continue executing the application.
The application executes normally before reaching the code on line 19 of
Fig. N.1 that calls Account method credit to raise the Account object’s balance
by a specified amount. The debugger notifies you that instance variable balance

will change (Fig. N.22). Note that although line 19 of class AccountTest calls
method credit, it is line 21 in Account’s method credit that actually changes
the value of balance.

5. Continuing execution. Type cont—the application will finish executing because
the application does not attempt any additional changes to balance (Fig. N.23).

6. Restarting the debugger and resetting the watch on the variable. Type jdb to re-
start the debugger. Once again, set a watch on Account instance variable balance
by typing the watch Account.balance, then type run AccountTest to run the ap-
plication (Fig. N.24).

Fig. N.21 | AccountTest application stops when account is created and its balance field
will be modified.

Fig. N.22 | Changing the value of balance by calling Account method credit.

Fig. N.23 | Continuing execution of AccountTest.

N.6 The clear Command 1527

7. Removing the watch on the field. Suppose you want to watch a field for only part
of a program’s execution. You can remove the debugger’s watch on variable bal-
ance by typing unwatch Account.balance (Fig. N.25). Type cont—the applica-
tion will finish executing without reentering break mode.

8. Closing the Command Prompt window. Close the Command Prompt window by
clicking its close button.

In this section, you learned how to use the watch command to enable the debugger
to notify you of changes to the value of a field throughout the life of an application. You
also learned how to use the unwatch command to remove a watch on a field before the end
of the application.

N.6 The clear Command
In the preceding section, you learned to use the unwatch command to remove a watch on a
field. The debugger also provides the clear command to remove a breakpoint from an ap-
plication. You will often need to debug applications containing repetitive actions, such as a
loop. You may want to examine the values of variables during several, but possibly not all, of
the loop’s iterations. If you set a breakpoint in the body of a loop, the debugger will pause
before each execution of the line containing a breakpoint. After determining that the loop is
working properly, you may want to remove the breakpoint and allow the remaining itera-
tions to proceed normally. In this section, we use the compound interest application in
Fig. 5.6 to demonstrate how the debugger behaves when you set a breakpoint in the body of
a for statement and how to remove a breakpoint in the middle of a debugging session.

Fig. N.24 | Restarting the debugger and resetting the watch on the variable balance.

Fig. N.25 | Removing the watch on variable balance.

1528 Appendix N Using the Debugger

1. Opening the Command Prompt window, changing directories and compiling the
application for debugging. Open the Command Prompt window, then change to
the directory containing this appendix’s examples. For your convenience, we have
provided a copy of the Interest.java file in this directory. Compile the appli-
cation for debugging by typing javac -g Interest.java.

2. Starting the debugger and setting breakpoints. Start the debugger by typing jdb.
Set breakpoints at lines 13 and 22 of class Interest by typing stop at Inter-

est:13, then stop at Interest:22 (Fig. N.26).

3. Running the application. Run the application by typing run Interest. The ap-
plication executes until reaching the breakpoint at line 13 (Fig. N.27).

4. Continuing execution. Type cont to continue—the application executes line 13,
printing the column headings "Year" and "Amount on deposit". Note that line
13 appears before the for statement at lines 16–23 in Interest (Fig. 5.6) and
thus executes only once. Execution continues past line 13 until the breakpoint at
line 22 is reached during the first iteration of the for statement (Fig. N.28).

5. Examining variable values. Type print year to examine the current value of
variable year (i.e., the for’s control variable). Print the value of variable amount

too (Fig. N.29).

6. Continuing execution. Type cont to continue execution. Line 22 executes and
prints the current values of year and amount. After the for enters its second itera-
tion, the debugger notifies you that the breakpoint at line 22 has been reached a
second time. Note that the debugger pauses each time a line where a breakpoint has
been set is about to execute—when the breakpoint appears in a loop, the debugger
pauses during each iteration. Print the values of variables year and amount again to
see how the values have changed since the first iteration of the for (Fig. N.30).

Fig. N.26 | Setting breakpoints in the Interest application.

Fig. N.27 | Reaching the breakpoint at line 13 in the Interest application.

N.6 The clear Command 1529

7. Removing a breakpoint. You can display a list of all of the breakpoints in the ap-
plication by typing clear (Fig. N.31). Suppose you are satisfied that the Interest
application’s for statement is working properly, so you want to remove the break-
point at line 22 and allow the remaining iterations of the loop to proceed normal-
ly. You can remove the breakpoint at line 22 by typing clear Interest:22. Now
type clear to list the remaining breakpoints in the application. The debugger
should indicate that only the breakpoint at line 13 remains (Fig. N.31). Note that
this breakpoint has already been reached and thus will no longer affect execution.

8. Continuing execution after removing a breakpoint. Type cont to continue exe-
cution. Recall that execution last paused before the printf statement in line 22.
If the breakpoint at line 22 was removed successfully, continuing the application
will produce the correct output for the current and remaining iterations of the
for statement without the application halting (Fig. N.32).

Fig. N.28 | Reaching the breakpoint at line 22 in the Interest application.

Fig. N.29 | Printing year and amount during the first iteration of Interest’s for.

Fig. N.30 | Printing year and amount during the second iteration of Interest’s for.

Fig. N.31 | Removing the breakpoint at line 22.

1530 Chapter N Using the Debugger

In this section, you learned how to use the clear command to list all the breakpoints
set for an application and remove a breakpoint.

N.7 Wrap-Up
In this appendix, you learned how to insert and remove breakpoints in the debugger.
Breakpoints allow you to pause application execution so you can examine variable values
with the debugger’s print command. This capability will help you locate and fix logic er-
rors in your applications. You saw how to use the print command to examine the value
of an expression and how to use the set command to change the value of a variable. You
also learned debugger commands (including the step, step up and next commands) that
can be used to determine whether a method is executing correctly. You learned how to use
the watch command to keep track of a field throughout the life of an application. Finally,
you learned how to use the clear command to list all the breakpoints set for an application
or remove individual breakpoints to continue execution without breakpoints.

Fig. N.32 | Application executes without a breakpoint set at line 22.

Summary
• The debugger allows you to monitor the execution of an application so you can locate and re-

move logic errors.

• The -g compiler option compiles a class for debugging.

• The jdb command starts the debugger.

• The run command, followed by the class name of an application, runs the application through
the debugger.

• The stop command, followed by the class name, a colon and a line number, sets a breakpoint at
the specified line number.

• The cont command resumes execution after entering break mode.

• The print command, followed by the name of a variable, examines the contents of the specified
variable.

• The print command can be used to examine an expression’s value during the execution of an
application.

• The set command modifies the value of a variable during the execution of an application.

• The step command executes the next statement in the application. If the next statement to exe-
cute is a method call, control is transferred to the called method.

• The step up command executes the statements in a method and returns control to the place
where the method was called.

Terminology 1531

• The next command executes the next statement in the application. If the next statement to exe-
cute is a method call, the called method executes in its entirety (without transferring control and
entering the method), and the application advances to the next executable line after the method
call.

• The watch command tells the debugger to notify you if the specified field is modified.

• The unwatch command removes a watch on a field.

• The clear command, executed by itself, lists the breakpoints set for an application.

• The clear command, followed by a class name, a colon and a line number, removes the specified
breakpoint.

Terminology
break mode
breakpoint
clear command
cont command
debugger
exit command
-g compiler option
jdb command
next command

print command
run command
set command
step command
step up command
stop command
unwatch command
watch command

Self-Review Exercises
N.1 Fill in the blanks in each of the following statements:

a) A breakpoint cannot be set at a(n) .
b) You can examine the value of an expression by using the debugger’s com-

mand.
c) You can modify the value of a variable by using the debugger’s command.
d) During debugging, the command executes the remaining statements in

the current method and returns program control to the place where the method was
called.

e) The debugger’s command behaves like the step command when the next
statement to execute does not contain a method call.

f) The watch debugger command allows you to view all changes to a(n) .

N.2 State whether each of the following is true or false. If false, explain why.
a) When application execution suspends at a breakpoint, the next statement to be execut-

ed is the statement after the breakpoint.
b) Watches can be removed using the debugger’s clear command.
c) The -g compiler option must be used when compiling classes for debugging.
d) When a breakpoint appears in a loop, the debugger pauses only the first time that the

breakpoint is encountered.

Answers to Self-Review Exercises
N.1 a) comment. b) print. c) set. d) step up. e) next. f) field.

N.2 a) False. When application execution suspends at a breakpoint, the next statement to be ex-
ecuted is the statement at the breakpoint. b) False. Watches can be removed using the debugger’s
unwatch command. c) True. d) False. When a breakpoint appears in a loop, the debugger pauses
during each iteration.

