A Brief Overview of
Design Patterns

Xiannong Meng
for
CSCl 479
Fall 2013

10/16/2013

What is a design pattern?

¢ A design pattern is a description of
communicating objects and classes that are
customized to solve a general design problem
in a particular context.

A simplistic example

¢ Problem: Read a sequence of employee data
from a file until a particular employee ID is
read.

f = open(‘input.data’, ‘rb")

data = f.read(bytesOfData)

while data.id != IDToStop :
store data in structure (e.g., table, tree)
data = f.read(bytesOfData)

A “pattern” emerges:

prime the condition

while the condition is true:
do some work
update the condition

Pattern Reuse

¢ More importantly, the pattern can be reused
in many different applications

— Accumulate a sequence of integers with a sentinel
value

— Find a maximal (minimal) value in a sequence
— ... many more

Two important facts w.r.t. DP

* Two very important pieces of information play
critical role in the concepts of design patterns

— MVC: Model-View-Control design pattern segregates
the objects into three roles, model, view, and control.
The pattern dates back to the days of Smalltalk, late
70’s and early 80's. Still critically important today.

— The publication of Design Patterns: Elements of
Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides
(Addison-Wesley Professional, 1994), a.k.a. Gang of
Four (GOF).

Model in MVC

Encapsulate data and basic behaviors in model/
Model objects maintain

— Application data

— The logics that manipulate these data

¢ View objects

— Respond to user actions

— Present to the user the data from the model

¢ Control objects act in between model and
view

Forward user action to

Controlloe Update Madel based on
Voo o the user action

Unidate presentation o Notify Controliar with an

update.

The diagram is from the book by Chung (2011)

10/16/2013

An Excel example

¢ Given an Excel spreadsheet that keeps the
production output for a company in the first
six months of the year, show the user in
various form, compute average, or total as
requested

Model (The data and computation)

ABC Production Chart

Month Output
Jan %
Feb 7
Mar 88
Apr E3
May 9
Jun 7
Average 853
Total 512

Views (What users may see)

ABC Production Chart
Output

ABC Production Chart

20 Output
W = ABC production msan
2 Chart Output e
3
S B ad = Mar
& & & GRS
F @ s mapr

ABC Production Chart
Output

Total production: 512 M dollars
Monthly average: 85.3 M dollars

100
80 SN
60 —nBC
a0
2 Chart Output
o
Jan Feb Mar Apr May Jun

Control
(Interface between a user and the data)

request = userlnput()

if request == barchart :
data.showBarChart()

elif request == piechart :
data.showPieChart()

elif request == linechar :
data.showlLines()

else:
data.showSummary()

Our example of MVC

ABC Control
Productio... ABC request = userinput()
100 = ABC if request == barchart :
S produc “ wion data.showBarChart()
£E o Feb elif request == piechart :
data.showPieChart()
elif request == linechar :
ABC data showines()
Productio... else:
100 o data.showSummary()
. Model
Ve
View

Keys to MVC

¢ Separation of functions among different
objects (OO Design Principle 1: low coupling!)

¢ Single class (object) should have a single
responsibility (OO Design Principle 2: high
cohesion!)

10/16/2013

Issues affecting design

* Programming To An Interface, Not An
Implementation
— Design should concentrate on interface (behavior),
not specific implementation
e @protocol vs. Abstract Base Class (ABC) (in the
terms of Objective-C), or interface vs. abstract
class (in the terms of Java)
— Contrast between @protocol (Java interface) and ABC
(Java ABC)
e Object Composition vs. Class Inheritance

— Composition (black-box, properties hidden),
inheritance (white-box, properties visible)

Example of behavior

¢ We want to add books to a container that
allows search, the details of the container is

not the concern of the user (applications)
import bst as BookCase
#import avltree as BookCase
#import linkedlist as BookCase
myShelf = BookCase()
abook = read_from_the_user()
while abook !'= None:
myShelf.add(abook)
abook = read_from_the_user()

Example of interface vs. ABC

public abstract class Pet implements Walkable {
protected String name;
public Pet(String name) {this.name = name; }
public void walk() {System.out.printIn("Pet's common walk!"); }

}

public interface Walkable {
void walk();

}

public class PetOwner implements Walkable {
private String name;
public PetOwner(String name) { this.name = name; }
public void walk() {
System.out.printin(this.name + " : Exercise is good for me.");
}
}

public class Dog extends Pet implements Walkable {
public Dog(String name) { super(name); }
@Override public void walk() {
super.walk(); // Activate the parent's method before its own
System.out.printIn("Dog " + this.name + " : Pant!!! Where's my leash!?!");

Applications that might use both

public class TestWalking {
public static void sendWalking(Walkable walkObj) {
walkObj.walk();
}
public static void main(String[] args) {
PetOwner bob = new PetOwner("Tarzan"),
jane = new PetOwner("Jane");
Pet[] ourPets = {new Dog("Spot"), new Cat("Fluffy"), new Dog("Ceaser"),
new Dog("Roadkill") };
sendWalking(bob);
sendWalking(jane);
for (Pet p : ourPets)
sendWalking(p);

Example of composite and inheritance

class Vehicle:
def __init__(self, cap, count):
self._engine = Engine(cap) 4= composite
self._seats = count

inheritance

class PassengerCar(V;hicle):
def __init__(self, cap = 2.0, seats =4):
super().__init(cap, count)
self._door =4

class PickupTruck(Vehicle):
def __init__(self, cap = 3.8, seats =2):
super().__init(cap, count)
self._door =2

class MotorBoat(Vehicle):
def __init__(self, cap=5.0, seats=2):
super().__init(cap, count)
self._door=0

Common software design patterns

¢ In three general groups (23 original GOF
patterns)

— Creational patterns: object creation mechanisms,
trying to create objects in a manner suitable to
the situation.

— Structural patterns: design by identifying a simple
way to realize relationships between entities.

— Behavioral patterns: common communication
patterns between objects and realize these
patterns.

10/16/2013

Creational patterns

Abstract factory: provide an interface for creating families of related
or dependent objects without specifying their concrete classes.

Builder: Separate the construction of a complex object from its
representation allowing the same construction process to create various
representations.

Factory method: Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses.

Prototype: Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.

Singleton: Ensure a class has only one instance, and provide a global
point of access to it.

Structural patterns (1)

e Adapter (Wrapper or Translator): Convert the interface of a
class into another interface clients expect.

* Bridge: Decouple an abstraction from its implementation
allowing the two to vary independently.

¢ Composite: Compose objects into tree structures to
represent part-whole hierarchies. Composite lets clients
treat individual objects and compositions of objects
uniformly.

¢ Decorator: Attach additional responsibilities to an object
dynamically keeping the same interface. Decorators provide
a flexible alternative to subclassing for extending
functionality.

Structural patterns (2)

Fagade: Provide a unified interface to a set of
interfaces in a subsystem. Facade defines a
higher-level interface that makes the
subsystem easier to use.

Flyweight: Use sharing to support large
numbers of similar objects efficiently.

Proxy: Provide a surrogate or placeholder for
another object to control access to it.

Behavioral patterns (1)

¢ Chain of responsibility: Avoid coupling the sender of a request to
its receiver by giving more than one object a chance to handle the
request. Chain the receiving objects and pass the request along the
chain until an object handles it.

¢ Command: Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log requests,
and support undoable operations.

* Interpreter: Given a language, define a representation for its
grammar along with an interpreter that uses the representation to
interpret sentences in the language.

* Iterator: Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying representation.

Behavioral patterns (2)

Mediator: Define an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling by
keeping objects from referring to each other explicitly, and
it lets you vary their interaction independently.

Memento: Without violating encapsulation, capture and
externalize an object's internal state allowing the object to
be restored to this state later.

Observer (or Publish/subscribe): Define a one-to-many
dependency between objects where a state change in one
object results in all its dependents being notified and
updated automatically.

State: Allow an object to alter its behavior when its internal
state changes. The object will appear to change its class.

Behavioral patterns (3)

Strategy: Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.
Template method: Define the skeleton of an algorithm in
an operation, deferring some steps to subclasses. Template
method lets subclasses redefine certain steps of an
algorithm without changing the algorithm's structure.

Visitor: Represent an operation to be performed on the
elements of an object structure. Visitor lets you define a
new operation without changing the classes of the
elements on which it operates.

10/16/2013

An jterator example

Iterator is almost a universal structure
(pattern!) needed by all objects

For example, your management asked your
team to write a collection of programs to
examine the performance of various search
algorithms, using linear search, binary search,
binary search trees, AVL trees, and hash table.
Each of these structures needs an iterator.

See the code example in code/iterator

References

Chung, C., (2011), Pro Objective-C Design
Patterns for iOS, Apress, New York, NY.

Freeman, E. & Freeman E., (2004), Head First
Design Patterns, O'Relly, Sebastopol, CA.

Gamma, E., Helm, R,, Johnson, R., & Vlissides, J.,
(1994), Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley,
Reading, MA.

Wikipedia: Software Design Pattern,
http://en.wikipedia.org/wiki/Software_design_pa
ttern

