
2/1/2019

1

More on recursion

Last time we went through a workshop
on recursive functions.

Let’s look at some of the problems
together.

Problem 6

Given a string my_string, return a string
WITHOUT any of the letter x's. For example,

no_x("x1xx2x3") should return "123"

no_x("xxx") should return "“

no_x(“123”) should return “123”

Solution to Problem 6

• Base case(s)

– If len(s) == 0:

• return “”

• Recursion(s)

– Check to see if the first letter s[0] is an ‘x’, if so,
recursive call with string slicing s[1:] without s[0]

– If the first letter s[0] is not an ‘x’, return s[0] +
recursive call with string slicing s[1:]

Function no_x(s)

Problem 7

Given a string my_string, return a string in which all
the characters are separated by *. For example,

all_star("hello") should return "h*e*l*l*o“

all_star("hi") should return "h*i“

all_star(“A”) should return “A”

Solution to Problem 7

• Base case(s)

– If len(s) == 0 or len(s) == 1 # check len(s) == 1 is
important, consider the case with one letter only

• return s

• Recursive calls

– return s[0] + ‘*’ + recursive call with slicing s[1:]

2/1/2019

2

Function: all_star(s)
New problem: counting vowels

• Given a string, return the number of vowls

– E.g., count_vowels(‘hello’) returns 2

– count_vowels(‘world’) returns 1

– count_vowels(‘how are you?’) returns 5

– count_vowels(‘12345’) returns 0

Solution to counting vowels

• Base case(s)

– If string length is zero, return 0

• Recursive calls

– If the first letter is a vowel, return 1 + call with
slicing s[1:]

– If the first letter is not a vowel, return call with
slicing s[1:]

Function: count_vowels()

Edit distance

• One of our early reading quiz asks what is an
edit distance.

– Edit distance is the minimum number of
operations required to transfer one string to
another.

• E.g,
>>> distance(‘boy’, ‘joy’) # replace ‘b’ by ‘j’
1
>>> distance('spam', 'poems') # del ‘s’
4 # add ‘s’ to end ‘pams’

repl ‘a’ with ‘o’ ‘poms’
insrt ‘e’ ‘poems’

>>> distance('alien', 'sales') # see textbook
3

How to tackle the problem
1. We want to write a function distance(s1, s2) to

measure the edit distance between s1 and s2

2. Base case(s)

– If both strings are empty, the distance is zero

– If one string is empty and the other is not, the distance is
the length of the non-empty string

def distance(first, second):
'''Returns the edit distance between first and second.'''
if first == '':

return len(second)
elif second == '':
return len(first)

2/1/2019

3

How to tackle the problem (2)
3. If s1[0] == s2[0], we just call the function

recursively with the remaining part of the
string

elif s1[0] == s2[0]:
return distance(s1[1:], s2[1:])

How to tackle the problem (3)
4. Now we need consider cases when the first letter is

different

1. Substitute the first letter of s1 by that of s2 (vice versa
results the same.)

2. Delete the first letter of s1, comparing the remaining

3. Delete the first letter of s2, comparing the remaining

5. Use Python’s min() function to find which
one is the best!

Should return 1 + distance(s1[1:], s2[1:])

Should return 1 + distance(s1[1:], s2)

Should return 1 + distance(s1, s2[1:])

The complete program

Try it out! (distance.py)

