
2/8/2019

1

Remembering Data

x = 41
name: x

type: int

41

name: tempF

type: float

32.0

name: dbl

type: function

Just like numbers, strings, and lists,
functions are also data!

Therefore, functions can take
other functions as input!

Functions that take other functions as input or return
functions are called higher order functions

tempF = 32.0

def dbl(x):

return 2*x

def dbl(x):

return 2*x

myList = [1, 2, dbl]

canWeDouble = myList[2]

canWeDouble(12)

>>> 24

>>> myList[2](3) # or simply

>>> 6

Mapping

• Map – The application of one specific
operation to each element in a list

• Example: suppose we wanted to double the
value of every number in a list, and output the
new list?

>>> dblList([1,2,3,4,5])

[2,4,6,8,10]

• Sure we can do it in list comprehension. But
mapping makes it more genral.

A general approach…

• What if we could apply any arbitrary function
to each element in a list to produce a new list?

[1, 2, 3, 4, 5]

def dbl(x):

return 2*x

[2, 4, 6, 8, 10]

map!
• map(f,t) – A built-in function that applies

any arbitrary function f to every element in t

– t is any iterable object, list is an example

def dbl(x):

return 2*x
lst = [1,2,3,4,5]

newLst = map(dbl,lst)

Why? map() returns an iterable
object.

Map examples
def dbl(x):

return 2*x
>>> list(map(dbl, [0,1,2,3,4,5]))

[0, 2, 4, 6, 8, 10]

def square(x):

return x**2

>>> list(map(square, range(6)))

[0, 1, 4, 9, 16, 25]

>>> list(map(dbl, 'test'))

['tt', 'ee', 'ss', 'tt']

def isA(x):

return x == 'a'

>>> list(map(isA, 'go away!'))

[False, False, False, True, False, True, False, False]

2/8/2019

2

Map !

def dblList(lst):

if lst == []:

return lst

else:

return [lst[0]*2] + dblList(lst[1:])

Without map

def dbl(x):

return x*2

def dblList(lst):

return list(map(dbl, lst))

With map!

Map v. Lists?

map(dbl, range(99))

vs.

[dbl(num) for num in range(99)]

Map v. Lists?

map(dbl, range(9999999999999))

vs.

[dbl(num) for num in range(999999999999999)]

Scalability!
Map binds (connects) function to data, it
doesn’t generate the list until referenced.

List comprehension computes as listed.

Reducing lists
• reduce(f,t) – Applies f (a function of two

arguments) cumulatively to the items of t

– applied from left to right, so as to reduce the
sequence to a single value

– NOT a built-in function! Available in functools
module

• Example:
def add(x,y):

return x + y

from functools import reduce

>>> reduce(add, [1,2,3,4,5])

15

NOTE: fmust return the
same type! Why?

The process is 1+2, then
3+3, then 6+4, then 10+5.

Filter
• filter(f,t) – constructs a list from those

elements of t for which f returns True

– applied from left to right

– Example:

def is_vowel(x):
return x in ‘aeiou’

>>> x = filter(is_vowel, ‘hello world’)
>>> list(x)
>>> [‘e’, ‘o’, ‘o’]

Map - apply same action to every element in sequence.

[2, 7, 6, 4] [4, 14, 12, 8]

Computations == Transformations

data new data
transformation

Common transformations - found in many programming languages.

double

Filter - select certain items in a sequence by a predicate.

(A predicate is a function that returns True or False.)

[3, 2, 13, 17, 6] [2, 6]isEven

Reduce - apply the same action between elements of a sequence.

reduce(add, [2, 3, 7, 4]) == (((2+3)+7)+4) == 16

(Remember: lists and strings are sequences.)

