Remembering Data

x = 41 41
name: x
type: int

0 32.0
name: tempF
type: float

tempF = 32.

def dbl (x):
name: dbl
return 2*x type: function

Just like numbers, strings, and lists, ~ Therefore, functions can take
functions are also data! other functions as input!

Functions that take other functions as input or return
functions are called higher order functions

Mapping

* Map — The application of one specific
operation to each element in a list

* Example: suppose we wanted to double the
value of every number in a list, and output the
new list?

>>> dblList([1,2,3,4,5])
[2,4,6,8,10]
* Sure we can do it in list comprehension. But
mapping makes it more genral.

map!
* map (£, t) — A built-in function that applies
any arbitrary function £ to every element in t
— t isany iterable object, list is an example

dbl (x) :

oo 1st = [1,2,3,4,5]

newLst = map(dbl,1lst)

»»> newlst = map(dbl,lst)
»»> newlst N
<map cbject ot @x17dedf@- object.

Why? map () returns an iterable

»»> list(nealst)
[2, ¢, 6, 8, 18]

2/8/2019

def dbl(x):
return 2*x

myList = [1, 2, dbl]
canWeDouble = myList[2]
canWeDouble (12)

>>> 24

>>> myList[2] (3) # or simply
>>> 6

A general approach...

* What if we could apply any arbitrary function
to each element in a list to produce a new list?

0 |/ dby (4

Map examples

dbl (x) : >>> list(map(dbl, [0,1,2,3,4,5]))
P [0, 2, 4, 6, 8, 10]

>>> list(map(dbl, 'test'))
['tt', 'ee', 'ss', 'tt']

square (x) : >>> list(map(square, range(6)))
X**2 [0, 1, 4, 9, 16, 25]

isA(x):

x == 'a'

>>> list(map(isA, 'go away!'!'))
[False, False, False, True, False, True, False, False]

def dblList(1lst): Without map
if 1st == []:
return lst

else:
return [1lst[0]*2] + dblList(lst[1:])

def dbl(x):

return x*2 With map!

def dblList(1lst):
return list(map(dbl, 1lst))

Map v. Lists?

map (dbl, range(9999999999999))
vs.

[dbl(num) for num in range (999999999999999)]

Scalability!
Map binds (connects) function to data, it
doesn’t generate the list until referenced.
List comprehension computes as listed.
»»> newlst = map(dbl,lst)

ams newlst »»> list{nealst)
4
<map object at @x17de3fes [2, ¢, &, 8, 18]

Filter
e filter (£, t) — constructs a list from those
elements of t for which f returns True
— applied from left to right
— Example:

def is_vowel(x):
return x in ‘aeiou’

>>> x = filter(is_vowel, ‘hello world’)
>>> list(x)
55> ['e), ‘0, ‘0]

2/8/2019

Map v. Lists?

map (dbl, range(99))
vs.

[dbl(num) for num in range (99)]

Reducing lists
e reduce (£, t) — Applies £ (a function of two
arguments) cumulatively to the items of t

— applied from left to right, so as to reduce the
sequence to a single value

— NOT a built-in function! Available in functools

module
e Example:
add(x,y) : The process is 1+2, then
x +y 3+3, then 6+4, then 10+5.
functools reduce

>>> reduce(add, [1,2,3,4,5]) NOTE: £ must return the

15 same type! Why?

Computations == Transformations

transformation
—"¢C newdata

Common transformations - found in many programming languages.

Map - apply same action to every element in sequence.

[2,7,6,4] (4,14, 12, 8] (Remember: lists and strings are sequences.)
double

Filter - select certain items in a sequence by a predicate.
(A predicate is a function that returns or J)
[3,2,13,17,6) -sEven 5 6]
Reduce - apply the same action between elements of a sequence.

reduce(add, [2, 3, 7, 4]) == (((2+3)+7)+4) == 16

