
2/11/2019

1

Random numbers
• What does it mean for a number to

be random?
– A number that is drawn from a set of

possible values, each of which is
equally probable. More precisely,
the outcome is non-predictable.

• Many practical uses:
– Computer games
– Simulation of natural phenomena
– Cryptography
– Art, Music
– Etc… any problem where you want

to produce an unpredictable result!

The random module

• Thankfully, you don't have to implement your
own RNG

import random

from random import *

Some random functions…

choice(my_list)

randint(low,hi)

choice(['Harris', 'McDonnell', 'Larison'])

chooses 1 element from the sequence my_list

chooses a random int from low to hi,
inclusive

How would you get a random int from 0 to 9 inclusive?

Throw a coin n times …
from random import *

def flip_coins(n = 20):

mapping = ['H', 'T']

flip_list = [mapping[randint(0,1)] for flip in range(n)]

print(''.join(flip_list))

This will do the same…
from random import *

def flip_coin2(n = 20):

flip_list = [choice([‘H’, ‘T’]) for flip in range(n)]

print(''.join(flip_list))

The above two versions of the
program prints the list, how to return
the list instead of printing?

2/11/2019

2

Example: random, chr(), ord()
• Given a string, write a function that converts all

letters to upper case, keeping others as they are.
Note: without using upper(), i.e., write your own
upper().

• Example: “abc123” “ABC123”, “hello”
“HELLO”, “123 456” “123 456”

• Idea:
– First check to see if the parameter is a letter ‘a’ – ‘z’. If

it is not, return as it is;
– If it is a lower case letter, compute the distance

between this letter and ‘a’, return the letter by adding
the distance to ‘A’.

– Do it for every symbol in the string.

upper_letter()

to_upper() and its use A bit twist

• The same as above, converting to upper case,
however, now we want to map each lower
case letter to a random upper case letter.

• Example: ‘abc123’ ‘SGC123’, ‘hello’
‘SGEBU’, ‘123 456’ ‘123 456’

• Idea: everything is the same as the previous
case (to_upper()) except when generating the
upper case letter, we use a random distance,
instead of a fixed one [ord(c) – ord(‘a’)]

Code and execution Monte Carlo Methods

• Any method which solves a problem by
generating suitable random numbers, and
observing the fraction of numbers obeying
some property (or properties)

– The method is useful for obtaining numerical
solutions to problems which are too complicated
to solve analytically.

http://mathworld.wolfram.com/MonteCarloMethod.html

http://mathworld.wolfram.com/MonteCarloMethod.html

2/11/2019

3

Monte Carlo in action

def count_doubles(n):

""" inputs a # of dice rolls

outputs the # of doubles """

if n == 0:

return 0 # zero rolls, zero doubles…

else:

d1 = choice([1,2,3,4,5,6])

d2 = choice(range(1,7))

if d1 != d2:

return count_doubles(n-1) # don't count it

else:

return 1 + count_doubles(n-1) # COUNT IT!

one roll

where is the doubles check?

the input n is the
total number of rolls

How many doubles will you get
in n rolls of 2 dice?

Monte Carlo in action

def count_doubles(n):

""" inputs a # of dice rolls

outputs the # of doubles """

return sum([choice(range(6)) == choice(range(6)) \

for x in range(n)])

where is the doubles check?

Write the same function with
a list comprehension

One final example…

• Suppose you wanted to estimate pi

1. Generate two random numbers between -1
and 1.

– denoted (x,y)

2. Compute the distance of (x,y) from (0,0)

3. Depending on distance, point is either inside
or outside of a circle centered at (0,0) with a
radius of 1.

Illustration…

Exercise Design a strategy for estimating pi using random numbers

("dart throws") and this diagram ("dartboard"):

(1,1)

(-1,-1)

1) Here is a dart-throwing function:

2) Here is a dart-testing function:

3) What strategy could use the functions

in (1) and (2) to estimate pi?

What does
this return?

What does
this return?

4) Write a function to implement your strategy:

Name(s):

def throw():

return [random.uniform(-1,1),

random.uniform(-1,1)]

def test(x,y):

return (x**2 + y**2) < 1.0

