LOGIC OPERATIONS

A bit of intuition. ..

21 << 1 5 & 6
42 2
21 >> 1

10

A bit of intuition. ..

Sometimes the bits are almost visible:

10101 101 110
21 <1 5 & 6

101010 100

10101

21 >> 1

1010

101

11

~0

111

110

2/16/2019

Logic operations

* We have already seen keywords or, and, not used in
Python

— Had a specific purpose — Boolean expressions. For example:

if x >= 0 and x < 10:
print("x is a single digit")

* Python has a set of operators for bitwise computations:
— &: bitwise AND
— | : bitwise OR
— ~: bitwise NOT
— >>: shift to the right
— <<: shift to the left

A bit of intuition...

Sometimes the bits are almost visible:

10101 101 110 101 110
21 << 1 5 & 6 51 6
10101 000
21 >> 1 ~0
~ .
However ~0 gives -1 ???
S>> x = e will see a thorou iscussion on this
x We will th hd th
>>> ~x later. Here is a quick illustration of the
-1 idea.
__ Take an example of 3-bit binary
000 0 number. We can represent 8
001 1 different values.
1 2
010 If we want to represent negative
011 3 numbers, we would typically
100 -4 (for good reasons!) to have —
101 3 (n+1) to n. In this case, -4 to 3.
In this system, the binary
110 -2 pattern of -1 is 111, which is ~0.
111 -1

2/16/2019

Truth tables All computation
input output input output input __output ... consists of functions of bits, or boolean values
x X
Y AND (x,y) ® ¥ OR(x,y) * NOT (x) Boolean inputs x,y.... Boolean functions can
0 0 0 0 0 0 0 1 can only be 0 or 1 (False output only 0 or 1
0 1 0 0 1 1 1 0 or True). (False, True).
10 0 1 0 1
11 1 1 1 1 inpats output
g 36 fn(x,y)
AND Qutp uts 1 OR outputs 1 if NOT reverses 0 1 0
only if ALL inputs ANY input is 1 its input 1
are 1 P P 1 0 1
1 1 0
AND OR NOT
Truth table
Lots of bits!
/ inputs output \
X Y z fn (x 1Y, 2)
0O 0 O 0
0 0 1 1
0 1 O 1
0o 1 1 0
1 0 O 1
1 0 1 0
1 1 0 0 LOGIC GATES AND CIRCUITS
1 1 1 1
\ Truth table J
R . . Ina Computer, each bit is Computation is simply the
eviewing... deliberate combination of those
g represented as a voltage voltages!
(1is+5v and 0is Ov)
* We have: Feynman: Computation is just a
— explored a wide range of data types 101010 physics experiment that always works!
— learned how different encodings are used for different types 4 2
— learned that, at the core of all data stored in the computer are ‘ ‘ | | ‘ ‘
bits @
— observed different operations that can be performed on these

bits (AND, OR, NOT)

ADDER |——3
+ We have one BIG QUESTION remaining... dranit |—13 <151
HOW IS COMPUTATION ACTUALLY CARRIED OUT? 9 ‘ | |
9

001001

In a computer, each bitis computation is simply the
deliberate combination of those

represented as a voltage voltages!

(1is +5v and 0is Ov)

Feynman: Computation is just a

hysics experiment that always works!
101010 physics exp s

4£2> ‘ | ‘ ‘ l | (1) set input voltages
ADDER |——§
circuit —3
>
001001

Ina computer, each bit is Computation is simply the deliberate
combination of those voltages!

represented as a voltage

(1is +5v and 0is Ov) HOW? The focus for

this week: Learn to

42 101010 design circuits that
can accomplish simple
Q computations!
ADDERSR— £)51
circuit —d
ﬁ | ‘ ‘ (2) read output voltages
9

001001

Circuits from logic gates... ?

What are all of the inputs that make this circuit output 1?
Note the three input gates, both OR and AND gates.

2/16/2019

In a computer, each bitis computation is simply the
deliberate combination of those

represented as a voltage voltages!

(1is +5v and 0is Ov)

101010
4§ ‘ ‘ ‘ | ‘ I (1) set input voltages
ADDER | ——§ g1
circuit —— E>
ﬁ ‘ | ‘ (2) read output voltages
9
001001

We need only three building circuits to
compute anything at all

input output input output
X Yy AND(x,y) X Yy OR(x,y) input output
0 o 0 0o o 0 X NOT(x)
0 1 0 0 1 1 0 1
10 0 10 1 1 0
11 1 1 1 1
input input
X| |y x y x
xy x+y %
andy output “xory" output ot
Logisim

* HW 5 — Use Logisim (a free circuit simulation
package) to design circuits to perform simple
computations

* Hard? Well, let's recall our claim — we only
need AND, OR and NOT to compute anything
at all...

Constructive Proof !

Specify a truth table defining For each input row whose
any function you want @ output needs to be 1, build

an AND circuit that outputs 1

input output only for that specific input!
x y fn(x,y)
00 0
0 1 1 OR them all together
1 0 1
1 1 0
Formula ! - - —
_ _ Minterm Expansion Principle —
Xy + Xy algorithm for building expressions
i from truth tables
minterm

Constructive Proof !

Specify a truth table defining For each input row whose
any function you want @ output needs to be 1, build

an AND circuit that outputs 1

input output only for that specific input!

x y fn(x,y)

0 0 0 OR them all together

0 1 1

1 0 1 - 3

11 0 Xy + Xy

J NOT AND

v Does this work for the red row?

x Does this work for any other rows?

Constructive Proof !

Specify a truth table defining For each input row WhOSfE
any function you want @ eds ® 1, build

input output

HHROO X

2/16/2019

Minterm expansion
readily converts into logic gates...

Constructive Proof !

Specify a truth table defining For each input row whose
any function you want @ output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

input output

x y fn(x,y)
) 0 OR them all together
0 1 1
10 1 Xy + Xy
1 1 0
{>c How did we handle the rows outputting zero?
o I —)

Constructive_Proof !

EXAMPLE

the less than or

l

"English"

[£(x,y) should
output 1 when

x <=y
otherwise, output 0

equal circuit (<=)

Try it!

‘We usually know what we want to do...
‘We just have to determine how to build it!

the less than or
equal circuit (<=)

l

"English"

£(x,y) should
output 1 when

x <=y
otherwise, output 0

Truth Table Formula
input bits output bit S
x y x<=y | XV EXY+XY
o0 o 1
0 0
11 1 @

Circuit

Try it!

We usually know what we want to do...
We just have to determine how to build it!

2/16/2019

Truth Table Formula
input bits output bit
X Yy x <=y ‘ ‘
0 0 1
0 1 1 !:ﬁ
0 0
11 1 @

Circuit

