
2/16/2019

1

LOGIC OPERATIONS

Logic operations

• We have already seen keywords or, and, not used in
Python
– Had a specific purpose – Boolean expressions. For example:

if x >= 0 and x < 10:
print("x is a single digit")

• Python has a set of operators for bitwise computations:
– & : bitwise AND
– | : bitwise OR
– ~ : bitwise NOT
– >>: shift to the right
– <<: shift to the left

A bit of intuition…

21 >> 1

21 << 1 5 & 6 5 | 6
42

10

? ?

A bit of intuition…

Sometimes the bits are almost visible:

21 >> 1

21 << 1 5 & 6 5 | 6

10101

~0
10101

101 110 101 110

000

A bit of intuition…

Sometimes the bits are almost visible:

21 >> 1

21 << 1 5 & 6 5 | 6

10101

~0
10101

101 110 101 110

000

101010

1010

100 111

111

However ~0 gives -1 ???

>>> x = 0
>>> ~x
-1

We will see a thorough discussion on this
later. Here is a quick illustration of the
idea.

Binary Decimal

000 0

001 1

010 2

011 3

100 -4

101 -3

110 -2

111 -1

Take an example of 3-bit binary
number. We can represent 8
different values.

If we want to represent negative
numbers, we would typically
(for good reasons!) to have –
(n+1) to n. In this case, -4 to 3.
In this system, the binary
pattern of -1 is 111, which is ~0.

2/16/2019

2

Truth tables

x y

0 0
0 1

1 0
1 1

AND(x,y)

0
0

0
1

AND outputs 1

only if ALL inputs

are 1

x y

0 0
0 1

1 0
1 1

OR(x,y)

0
1

1
1

OR outputs 1 if

ANY input is 1

NOT reverses

its input

input output

x

0
1

NOT(x)

1
0

input output input output

AND OR NOT

All computation

… consists of functions of bits, or boolean values

Boolean inputs x,y,…

can only be 0 or 1 (False

or True).

Boolean functions can

output only 0 or 1

(False, True).

Truth table

x y
0 0
0 1
1 0
1 1

fn(x,y)

0
1
1

0

inputs output

Lots of bits!

Truth table

x y
0 0
0 0
0 1
0 1

fn(x,y,z)

0
1
1
0

inputs output

z
0
1
0
1

1 0
1 0
1 1
1 1

0
1
0
1

1
0
0
1

LOGIC GATES AND CIRCUITS

Reviewing…

• We have:
– explored a wide range of data types
– learned how different encodings are used for different types
– learned that, at the core of all data stored in the computer are

bits
– observed different operations that can be performed on these

bits (AND, OR, NOT)

• We have one BIG QUESTION remaining…

HOW IS COMPUTATION ACTUALLY CARRIED OUT?

42
101010

In a computer, each bit is
represented as a voltage
(1 is +5v and 0 is 0v)

9
001001

ADDER

circuit 1
1
0
0
1
1

Computation is simply the
deliberate combination of those
voltages!

Feynman: Computation is just a
physics experiment that always works!

51

2/16/2019

3

42
101010

In a computer, each bit is
represented as a voltage
(1 is +5v and 0 is 0v)

9
001001

ADDER

circuit

Computation is simply the
deliberate combination of those
voltages!

Feynman: Computation is just a
physics experiment that always works!

(1) set input voltages

0
0
0
0
0
0

42
101010

In a computer, each bit is
represented as a voltage
(1 is +5v and 0 is 0v)

9
001001

ADDER

circuit 1
1
0
0
1
1

51

Computation is simply the
deliberate combination of those
voltages!

(2) read output voltages

(1) set input voltages

42
101010

In a computer, each bit is
represented as a voltage
(1 is +5v and 0 is 0v)

9
001001

ADDER

circuit 1
1
0
0
1
1

51

Computation is simply the deliberate
combination of those voltages!

(2) read output voltages

HOW? The focus for
this week: Learn to
design circuits that
can accomplish simple
computations!

x y

0 0
0 1

1 0
1 1

AND(x,y)

0
0

0
1

x y

0 0
0 1

1 0
1 1

OR(x,y)

0
1

1
1

input output

x

0
1

NOT(x)

1
0

input output

input output

x

x

"not x"

x

"x or y"

x y

x + y

y

xy

"x and y"
output

input

output

input

We need only three building circuits to

compute anything at all

Circuits from logic gates... ?

What are all of the inputs that make this circuit output 1?

Note the three input gates, both OR and AND gates.

Logisim

• HW 5 – Use Logisim (a free circuit simulation
package) to design circuits to perform simple
computations

• Hard? Well, let's recall our claim – we only
need AND, OR and NOT to compute anything
at all…

2/16/2019

4

Specify a truth table defining
any function you want

Constructive Proof !

x y

0 0
0 1

1 0
1 1

fn(x,y)

0
1

1
0

input output

i ii

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

iii OR them all together

Formula !

xy + xy
Minterm Expansion Principle –

algorithm for building expressions
from truth tables

minterm

Minterm expansion

readily converts into logic gates…

Specify a truth table defining
any function you want

Constructive Proof !

x y

0 0
0 1

1 0
1 1

fn(x,y)

0
1

1
0

input output

i ii

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

iii OR them all together

x y

NOT AND

Does this work for the red row?

Does this work for any other rows?

xy + xy

Specify a truth table defining
any function you want

Constructive Proof !

x y

0 0
0 1

1 0
1 1

fn(x,y)

0
1

1
0

input output

i ii

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

iii OR them all together

x y

NOT AND

NOT AND

OR

How did we handle the rows outputting zero?

xy + xy

Specify a truth table defining
any function you want

Constructive Proof !

x y

0 0
0 1

1 0
1 1

fn(x,y)

0
1

1
0

input output

i ii

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

iii OR them all together

x y

NOT AND

NOT AND

OR

How did we handle the rows outputting zero?

Specify a truth table defining
any function you want

Constructive Proof !

x y

0 0
0 1

1 0
1 1

fn(x,y)

0
1

1
0

input output

i ii

For each input row whose
output needs to be 1, build
an AND circuit that outputs 1
only for that specific input!

iii OR them all together

x y

NOT AND

NOT AND

OR

How did we handle the rows outputting zero?

2/16/2019

5

EXAMPLE

Try it!

We usually know what we want to do…

We just have to determine how to build it!

"English"

f(x,y) should

output 1 when
x <= y

otherwise, output 0

Truth Table Formula

Circuit

the less than or

equal circuit (<=)

x y

input bits output bit

x <= y

0 0

0 1

1 0

1 1

1
1

0
1

Try it!

We usually know what we want to do…

We just have to determine how to build it!

"English"

f(x,y) should

output 1 when
x <= y

otherwise, output 0

Truth Table Formula

Circuit

the less than or

equal circuit (<=)

x y

input bits output bit

x <= y

0 0

0 1

1 0

1 1

1

1

0
1

xy + xy + xy

x <= y

