Logic operations

- We have already seen keywords or, and, not used in Python
- Had a specific purpose - Boolean expressions. For example:
- Python has a set of operators for bitwise computations:
$-\&$: bitwise AND
- I : bitwise OR
- ~ : bitwise NOT
- >>: shift to the right
- <<: shift to the left

A bit of intuition...

A bit of intuition...

Sometimes the bits are almost visible:

```
21 << 1
5&6
42
?
5 1 6
?
```

$21 \gg 1$
10

A bit of intuition...

Sometimes the bits are almost visible:

However ~0 gives -1 ???

Truth tables

Lots of bits!

LOGIC GATES AND CIRCUITS

Reviewing...

- We have:
- explored a wide range of data types
- learned how different encodings are used for different types
- learned that, at the core of all data stored in the computer are bits
- observed different operations that can be performed on these bits (AND, OR, NOT)
- We have one BIG QUESTION remaining...

HOW IS COMPUTATION ACTUALLY CARRIED OUT?

All computation

In a computer, each bit is represented as a voltage ($\mathbf{1}$ is +5 v and $\mathbf{0}$ is 0 v)

In a computer, each bit is represented as a voltage ($\mathbf{1}$ is $+5 v$ and $\mathbf{0}$ is $0 v$)

In a computer, each bit is represented as a voltage ($\mathbf{1}$ is +5 v and $\mathbf{0}$ is 0 v)

Computation is simply the deliberate combination of those voltages!

We need only three building circuits to compute anything at all

input		output
x	Y	AND (x, y)
0	0	0
0	1	0
1	0	0
1	1	1

input		output
x	Y	OR (x, y)
0	0	0
0	1	1
1	0	1
1	1	1

$\prod_{\text {output }}^{\text {input }}$

$\left.\right|_{\substack{\text { input }}} ^{\text {output }}$

Logisim

- HW 5 - Use Logisim (a free circuit simulation package) to design circuits to perform simple computations
- Hard? Well, let's recall our claim - we only need AND, OR and NOT to compute anything at all...

What are all of the inputs that make this circuit output 1 ? Note the three input gates, both OR and AND gates.

Constructive Proof!

(i) Specify a truth table defining any function you want

input		output
\mathbf{x}	\mathbf{y}	$\mathbf{f n}(\mathbf{x}, \mathbf{y})$
0	0	0
0	1	1
1	0	1
1	1	0

Formula!
$\underset{\text { minter }}{\overline{\mathbf{x}} \mathbf{y}+\mathbf{x} \overline{\mathbf{y}}}$

For each input row whose
(ii) an AND circuit that outputs 1 only for that specific input!

OR them all together
iii

Minterm Expansion Principle algorithm for building expressions from truth tables

Constructive Proof!

(i) Specify a truth table defining any function you want

For each input row whose
$\frac{\text { input }}{\mathbf{x \quad y}} \frac{\text { output }}{\operatorname{fn}(x, y)}$

Constructive Proof!

Constructive Proof !

Try it!
We usually know what we want to do...
We just have to determine how to build it!

the less than or equal circuit $(<=)$

$$
x<=y
$$

