Remember the steps ...

- Build the truth table
- Construct the minterm expression
- Convert the minterm expression into circuits

MORE EXAMPLE

"English"

$$
\begin{aligned}
& \mathrm{f}(\mathbf{x}, \mathrm{y}) \text { should output } 1 \\
& \text { when either } \mathbf{x} \text { or } \mathrm{y} \text { is } \\
& 1 \text {, but not both, } \\
& \text { otherwise, output } 0
\end{aligned}
$$

$\frac{\text { input }}{\mathrm{X} Y} \frac{\text { output }}{\operatorname{XOR}(x, y)}$
$\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}$
XOR
(2)
$\stackrel{\text { Formula }}{\bar{x}} \mathbf{y}+\mathbf{x} \overline{\mathbf{Y}}$

Minterm Expansion Principle -
algorithm for building expressions from truth tables

Addition as a circuit

- You (hopefully!) will build a simple adder circuit in lab...
\qquad

Addition as a circuit

- You (hopefully!) will build a simple adder circuit in lab..

input	output: SUM	A full adder sums three bits.
x y $\mathrm{c}_{\text {in }}$	$\mathrm{c}_{\text {out }}$ sum	(A 2-bit adder is a half adder)
000	00	
001	01	
010	01	
$\begin{array}{lll}0 & 1 & 1\end{array}$	10	Share the inputs, but design separate circuits
100	01	for each output bit...
101	10	
110	10	
111	11	

Building a Full Adder

Implementing addition in silicon...?
Create a circuit for each output bit !

input	output: SUM	
$\times \mathrm{y} \mathrm{c}_{\text {in }}$	$\mathrm{c}_{\text {out }}$	sum
000	0	0
001	0	1
010	0	1
011	1	0
100	0	1
101	1	0
110	1	0
111	1	1

Building a Full Adder

Implementing addition in silicon...? each output bit !

input	output: SUM
x y $\mathrm{c}_{\text {in }}$	$\mathrm{c}_{\text {out }}$ sum
000	00
001	01
010	0
011	10
100	01
101	10
110	10
111	1

Building a Full Adder

Implementing addition in silicon...?
Create a circuit for each output bit !

input	output: SUM
$\times \mathrm{y} \mathrm{c}_{\text {in }}$	$\mathrm{cout}_{\text {out }}$ sum
000	00
001	01
010	01
011	10
100	01
101	10
110	10
111	1

Composing circuits

4-bit Ripple-carry Adder

two 4-bit inputs				
	0	1	1	
+	1	1	0	

How many output bits?

Getting rid of ANDs ?

AND... without ANDs

NOR

NOR equivalencies

Desired Gate

What about AND?

Odd parity circuit

Here's the truth tabledefining a function

Write down minterm expansion formula
2 that represents this circuit?

NOR gates

- NOR gates

- FACT: ALL gates can be built out of NOR gates...

AND... with NORs

Odd parity circuit B Buld separate e cruculs sor each

[^0](2) that represents this circuit?

Odd parity circuit

[^0]: 2 Write down minterm expansion formula

