Remember the steps ...

- Build the truth table
- Construct the minterm expression
- Convert the minterm expression into circuits

"English" f(x,y) should output 1 when either x or y is 1, but not both, otherwise, output 0 XOR 3 1 (2 input output NOT XOR (x,y) x Formula AND У 0 1 0 0 1 1 0 1 $\overline{\mathbf{x}}\mathbf{y} + \mathbf{x}\overline{\mathbf{y}}$ OR NOT AND 0 1 1 0 Minterm Expansion Principle algorithm for building expressions from truth tables

Addition as a circuit

 You (hopefully!) will build a simple adder circuit in lab...
input Output:

MORE EXAMPLE

Addition as a circuit

• You (hopefully!) will build a simple adder circuit in lab...

input			output: SUM	
x	У	\mathbf{c}_{in}	c _{out}	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

A *full adder* sums three bits. (A 2-bit adder is a *half adder*)

Share the inputs, but **design separate circuits** for each output bit...

1

Building a Full Adder

?	Create a circuit for each output bit !			
all input l	bits			
	Odd Parity Circuit	– sum output bit		

Building a Full Adder

Implementing addition in silicon...?

Building a Full Adder

Composing circuits

Getting rid of ANDs ?

i x	nput Y	output AND (x, y	- only	Can you get rid of the ANDs by using only NOTs and ORs?		
0	0	0				
0	1	0				
1	0	0				
1	1	1				
i	nput	output	output	output		
x	У	OR (x,y)	NOT (OR (x,y))	NOT (OR (NOT (x) , NOT (y)))		
0	0	0	1	0		
0	1	1	0	0		
1	0	1	0	0		
1	1	1	0	1		

12

AND... without ANDs

13

NOR

NOR gates

• FACT: ALL gates can be built out of NOR gates...

What about AND?

2/25/2019

