
3/1/2019

1

Hmmm Assembly Language

A QUICK OVERVIEW OF CPU

Hmmm

CPU RAM
central processing unit random access memory

Von Neumann 
bottleneck

read r10

1

2

3

4

5

…

6

255

halt

255 memory locations of 16 bits

r0

…

16 registers,

each 16 bits

r15

they can 
hold values 
from -32768 
upto 32767

r1

r2

Program 
Counter

Instruction 
Register

Holds the current 
instruction

Holds address of the 
next instruction

Harvey Mudd Miniature Machine

mul r2,r1,r1 

add r2,r2,r1

write r2

0

Fetch-Execution Cycle

CPU execution repeats the Fetch-Execution 
Cycle,
• Fetch a instruction from memory
• Decode to determine what the instruction 

intends to do
• Execution the instruction as specified

during which the PC is incremented properly.

Assembly Language register-level 

programming

reg7 = reg6 * reg2mul r7 r6 r2

read r1

write r1
read from keyboard 
and write to screen

add r2 r2 r2 reg2 = reg2 + reg2
crazy, perhaps, but used ALL the time

reg1 = 42
you can replace 42 with 

anything from -128 to 127setn r1 42

reg1 = reg1 - 1 a shortcutaddn r1 -1

which is why it is written this way in python!
sub r2 r1 r4 reg2 = reg1 - reg4

div r1 r1 r2 reg1 = reg1 / reg2
INTEGER division - no remainders

Each of these instructions (and many 

more) get implemented for a particular 

processor and particular machine… .

assembly code actual meaning

the assembler

a program that translates from human-readable 

assembly language into machine language (binary)

assembly code
executablemachine code

setn r1,6

setn r2,7

mul r3,r1,r2

write r3

0000 0001 0000 0001
1000 0010 0001 0001
0110 0010 0010 0001
0000 0010 0000 0010
0000 0000 0000 0000

We use

hmmmAssembler.py

to assemble

We use 

hmmmSimulator.py

to execute the machine code



3/1/2019

2

Real  Assembly Language

Hmmm has a subset common 

to all real assembly languages.

two of the Intel instructions (SSE4, 2008)

A few of the many basic 

processor instructions (Intel)

What will this program output? (1)

halt

setn r2 9

read r1

sub r3 r1 r2

div r3 r3 r2

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3 addn r3 -1

write r35

6

Suppose your input is 42 
when line 0 is executed

42

What will this program output? (2)

halt

setn r2 9

read r1

sub r3 r1 r2

div r3 r3 r2

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3 addn r3 -1

write r35

6

Suppose your input is 42 
when line 1 is executed

42

9

What will this program output? (3)

halt

setn r2 9

read r1

sub r3 r1 r2

div r3 r3 r2

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3 addn r3 -1

write r35

6

Suppose your input is 42 
when line 2 is executed

(x-9)

42

9

33

What will this program output? (4)

halt

setn r2 9

read r1

sub r3 r1 r2

div r3 r3 r2

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3 addn r3 -1

write r35

6

Suppose your input is 42 
when line 3 is executed

(x-9)

(x-9) // 9

42

9

3

What will this program output? (5)

halt

setn r2 9

read r1

sub r3 r1 r2

div r3 r3 r2

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3 addn r3 -1

write r35

6

Suppose your input is 42 
when line 4 is executed

42

9

2



3/1/2019

3

What will this program output? (6)

halt

setn r2 9

read r1

sub r3 r1 r2

div r3 r3 r2

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

r3

General-purpose register r3 addn r3 -1

write r35

6

Suppose your input is 42 
when line 5 is executed

42

9

2

What is the equivalent of 
Python?

Write an Hmmm 
program

to compute

x   + 3x – 4

HINT: Use the previous 
program as a model

2

0  read  r1

1  setn r2, 9

2  sub   r3, r1, r2

3  div   r3, r3, r2

4  addn r3, -1

5 write r3

6 halt

For your reference:
((x – 9) // 9) - 1

x2 + 3x - 4
0   read   r1               # r1 = read x

1   mul r2, r1, r1       # r2 = x**2

2   setn r3, 3            # Need 3 in reg

3   mul r3, r3, r1       # r3 = 3*x

4   add    r2, r2, r3       # r2 = r2 + r3

5   addn r2,-4            # x**2 + 3*x - 4

6   write  r2               # Output result

7   halt

Is this enough?

0

1

2

3

4

Why couldn't we implement 

Python using our Hmmm 

Assembly so far?

halt

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

What’s 
missing?

Loops and ifs

It's too linear! "straight-line code"

jump!

We couldn't implement Python using our 

Hmmm Assembly Language so far... !

0

1

2

3

4 jumpn 1

mul r2 r1 r1

read r1

add r2 r2 r1

write r2

Hmmm,   Let's jump !

halt

write r1

setn r1 42

addn r1 1

jumpn 1

RAMCPU

0

1

2

3

4

r1

General-purpose register r1

r2

General-purpose register r2

What if we replace 1 with 2? 

random access memorycentral processing unit

What does this program do?



3/1/2019

4

jumps

Unconditional jump

Conditional jumps

jumpn 42

jeqzn r1 42

jgtzn r1 42

jltzn r1 42

jnezn r1 42

"jump to program line number 42"

IF r1 == 0 THEN jump to line number 42

IF r1 > 0 THEN jump to line number 42

IF r1 < 0 THEN jump to line number 42

IF r1 != 0 THEN jump to line number 42

Indirect jump

jumpr r1 Jump to the line number stored in reg1!

jgtzn

RAM
random access memory

read r10

1

2

3

4

5

6

7

8

jgtzn r1 7

setn r2 -1

mul r1 r1 r2

nop

nop

nop

write r1

halt

CPU
central processing unit

r1

General-purpose register r1

r2

General-purpose register r2

screen

With an input of -6, what 
does this code write out?

What function is this?

(A) -42 (B) -6 (C) -1     (D) 6     (E) 42

PollEv.com/xiannongmeng758

text: xiannongmeng758 to 37607


