
3/4/2019

1

Functions in Hmmm Assembly

Functions in Python vs. assembly
r1 = int(input())

r13 = f(r1)

print(r13)

def f(r1):

r13 = r1*(r1-1)

return r13

0 read r1

1 calln r14, 4

2 write r13

3 halt

4 copy r13, r1

5 addn r13, -1

6 mul r13,r1,r13

7 jumpr r14

Write a NEW FUNCTION that returns 1 if the input

is > 0 and 2 if the input is <= 0

Why Functions?

computes n*(n-1) without function
0 read r1
1 jumpn 4
2 write r13
3 halt
4 copy r13, r1
5 addn r13, -1
6 mul r13,r1,r13
7 jumpn 2

This program does exactly
the same as the function
before without function
(“calln”). We “hard-
coded” the return
address “jumpn 2.”

But, what if another place in the program needs this part of the
computation??? “jumpn 2” will lead to a wrong place! “jumpr
r14” (thus function) will be needed!

Function is just a block of computation, no real magic.
We can use “jumpn” to accomplish the same goal.

storer stores TO memory

Hmmm RAM
Hmmm CPU

stores r1 into r15's
MEMORY LOCATION

(not into r15 itself!)

setn r1 420

1

2

3

4

5

setn r15 70

storer r1 r15

write r0

halt

write r1

storer r1 r15

r1

r15

r0 0

points to a location in memory

70

.

.

.

4

70

42

storer rX rY # stores the content of rX into memory address held in rY

loadr loads FROM memory

r1

Hmmm RAMHmmm CPU

nop

r15

0

1

2

3

4

5

setn r15 70

halt

loadr r1 r15

write r0

loads data into r1
from r15's MEMORY
LOCATION

(not r15 itself)
write r1

r0 0

loadr r1 r15

points to a location in memory

70

.

.

.

42 5

70

loadr rX rY # load value into rX from memory address held in rY

A function example
0 read r1 # Get the "x" for our function

1 setn r15, 70 # Set the stack pointer, (i.e.,

load address of stack into r15)

2 storer r1, r15 # Store r1, since f overwrites it

3 calln r14, 7 # Call our function f(x)

Set r14 to be 4, next PC

4 loadr r1, r15 # Load r1 back in place

5 write r13 # Print result

6 halt # Stop the program

7 addn r1, 1 # Compute f(x) = x + 1

8 copy r13,r1 # Save result into r13

9 jumpr r14 # Finished function, jump back

6# Try 18_fun_example.hmmm with the input of 129, or 1 0000 0001

3/4/2019

2

Are there any difference between instructions
and values (numbers)?

From computers’ point of view, the memory has separate
dedicated area for data and instructions. So the computer
knows which piece is data, which piece is instruction. But
human beings can’t tell data from instructions just from its form.

0 : 0000 0001 0000 0001 # 0 read r1, assuming input 257
1 : 0001 1111 0100 0110 # 1 setn r15, 70
2 : 0100 0001 1111 0001 # 2 storer r1, r15
3 : 1011 1110 0000 0111 # 3 calln r14, 7
4 : 0100 0001 1111 0000 # 4 loadr r1, r15
5 : 0000 1101 0000 0010 # 5 write r13
6: 0000 0000 0000 0000 # 6 halt
...
70: 0000 0001 0000 0001 # 70: integer 257, same as Line 0!

The program on the previous pages are compiled into machine
form in red.

Jumps in Hmmm

• Unconditional jump

– jumpn n # jump to line n (set PC to n)

• Conditional jumps

– jeqzn rx n # if reg x == 0, jump to line n

– jnezn rx n # if reg x != 0, jump to line n

– jltzn rx n # if reg x < 0, jump to line n

– jgtzn # if reg x > 0, jump to line n

• Indirect jump

– jumpr rx # jump to the value in reg x

Selection in Hmmm Assembly

Jumping for if statements

Python

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

Hmmm

x in r1

0 read r1

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

x > 2 aka x-2 > 0

x in r1

0 read r1

jump when ___ __ 0 we can only test < and >

Jump when not (x <= 2)

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...# x in r1

0 read r1

jump when x-2 > 0 we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

3/4/2019

3

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

figure out where later

x in r1

0 read r1

jump when x-2 > 0

1 copy r2 r1

2 addn r2 -2

3 jgtzn r2 __

we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

figure out where later

x in r1

0 read r1

jump when x-2 > 0

1 copy r2 r1

2 addn r2 -2

3 jgtzn r2 __

if body

4 addn r1 1

we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

figure out where later

figure out where later

x in r1

0 read r1

jump when x-2 > 0

1 copy r2 r1

2 addn r2 -2

3 jgtzn r2 __

if body

4 addn r1 1

jump to avoid else body

5 jumpn __

we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

figure out where later

figure out where later

x in r1

0 read r1

jump when x-2 > 0

1 copy r2 r1

2 addn r2 -2

3 jgtzn r2 __

if body

4 addn r1 1

jump to avoid else body

5 jumpn __

else body

6 setn r1 5

we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

figure out where later

figure out where later

x in r1

0 read r1

jump when x-2 > 0

1 copy r2 r1

2 addn r2 -2

3 jgtzn r2 __

if body

4 addn r1 1

jump to avoid else body

5 jumpn __

else body

6 setn r1 5

after the if

7 write r1

8 halt

we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

figure out where later.. 6

figure out where later.. 7

x in r1

0 read r1

jump when x-2 > 0

1 copy r2 r1

2 addn r2 -2

3 jgtzn r2 __

if body

4 addn r1 1

jump to avoid else body

5 jumpn __

else body

6 setn r1 5

after the if

7 write r1

8 halt

we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

3/4/2019

4

Jumping for if statements

x = int(input())

if x <= 2:

x = x + 1

else:

x = 5

print(x)

we can only jump using 0...

figure out where later.. 6

figure out where later.. 7

x in r1

0 read r1

jump when x-2 > 0

1 copy r2 r1

2 addn r2 -2

3 jgtzn r2 6

if body

4 addn r1 1

jump to avoid else body

5 jumpn 7

else body

6 setn r1 5

after the if

7 write r1

8 halt

we can only test < and >

Jump when not (x <= 2)

x > 2 aka x-2 > 0

DONE!

Try It: Write Hmmm for this code

x = int(input())

if x == 2:

x = 3

else:

x = x + 2

print(x)

Try It: Write Hmmm for this code

x = int(input())

if x == 2:

x = 3

else:

x = x + 2

print(x)

My solution

jump1.hmmm

0 read r1 # x is in r1

1 copy r2 r1

2 addn r2 -2

3 jeqzn r2 6

4 addn r1 2

5 jumpn 7

6 setn r1 3

7 write r1

8 halt

Try It: Write Hmmm for this code

x = int(input())

y = int(input())

if x > y:

x = 3

else:

x = y + 2

print(x)

Try It: Write Hmmm for this code

x = int(input())

y = int(input())

if x > y:

x = 3

else:

x = y + 2

print(x)

My solution

jump2.hmmm

0 read r1 # x is in r1

1 read r4 # y is in r4

2 sub r2 r1 r4 # test = x – y

3 jgtzn r2 7 # jump to 'if' branch

4 addn r4 2 # 'else' branch

5 copy r1 r4

6 jumpn 8

7 setn r1 3 # 'if' branch

8 write r1

9 halt

