
3/7/2019

1

Two more Hmmm examples

Try It: Write Hmmm for this code

x = int(input())

y = int(input())

if x > y:

x = 3

else:

x = y + 2

print(x)

My solution

jump2.hmmm

0 read r1 # x is in r1

1 read r4 # y is in r4

2 sub r2 r1 r4 # test = x – y

3 jgtzn r2 7 # jump to 'if' branch

4 addn r4 2 # 'else' branch

5 copy r1 r4

6 jumpn 8

7 setn r1 3 # 'if' branch

8 write r1

9 halt

Try It: Write Hmmm for this code

def print_even(n):
for i in range(n+1):

if i%2 == 0:
print(i)

n = int(input())
print_even(n)
n = int(input())
print_even(n)

My solution

print_even.hmmm

0 read r1

1 calln r14,7 # Call print_even(n)

2 nop

3 read r1

4 calln r14,7 # Call print_even(n)

5 nop

6 halt

function code print_even

7 setn r13, 2 # set d = 2

8 setn r2, 0 # set i = 0

9 jltzn r1, 16 # If n < 0, jump to end

10 mod r10, r2, r13 # r10 = r1 % 2

11 jnezn r10, 13 # not an even number, skip

12 write r2 # print even number

13 addn r1, -1 # Decrement n by 1

14 addn r2, 1 # Increment i by 1

15 jumpn 9 # Repeat

16 jumpr r14 # Return to the caller

For Loops in Python

How to compute w/o recursion?

• How to compute the length of a list without
recursion?

• How to compute the value of factorial without
recursion?

• Many problems we solved using recursion can
be solved in loops, or repetitions!

Loops in Python
Programming languages have mechanisms for explicitly

controlling / changing the state of a program:

LOOPS!

for x in [1,2,3]:

print(x)

for loops:
definite, intentional

iteration

6

General format of a for loop
for <variable> in <sequence>:

<commands in body of loop>

3/7/2019

2

for loop

for x in [2,4,6,8]:

print('x is',x)

print('Done!')

x is assigned each value
from this sequence

the BODY or BLOCK of the
for loop runs with that x

Code AFTER the loop will not
run until the loop is finished.

1

2

3

4

LOOP back to
step 1 for
EACH value in
the list

7

x is 2
x is 4
x is 6
x is 8
Done

Hmmm ideas in Python

00 read r1

01 setn r13 1

02 jeqz r1 6

03 mul r13 r13 r1

04 addn r1 -1

05 jump 02

06 write r13

07 halt

Iteration in Hmmm

x = int(input())

result = 1

while x != 0:

result *= x

x = x - 1

return result

Iteration in Python

8

Hmmm ideas in Python

Iteration in Python

We get the
advantages of
explicit looping,
AND self-contained
functions, AND
reasonable name
while.

def fac(x):

result = 1

while x != 0:

result *= x

x = x - 1

return result

9

Imperative programming!

• A programming paradigm that describes
computation in terms of statements that change
program state.
– Wikipedia

• Differences from functional programming?
– Recursion – a declarative / functional approach to

solving problems
– Treats computation as the evaluation of mathematical

functions
• The notion of "state" is explicitly avoided
• "state" is implicitly handled in the call stack!

10

State?
• A program state is defined by the state of its

variables.

• Every variable in a program has a state

– state – the current value a variable takes on while
a computation is carried out

• Variables change!

– That's why they are called variables!

x = 41

x = x + 1

the initial value is
often not the one we
want in the end

But we change it as
we go… 11

for loops

for n in :

print(n)

How could we get this

loop to run 42 times?

There are a range of answers to this one…
12

In the interest of
efficiency, these
are the only three
forms of for loops!

for x in [2,4,6,8]:

print(x)

Explicit sequence

for c in [7]*6:

print(c)

Sequence in expression

3/7/2019

3

for loops

for x in [2,4,6,8]:

print(x)

for c in [7]*6:

print(c)

for n in range(42):

print(n)

How could we get this

loop to run 42 times?

There are a range of answers to this one…
13

Recursion vs Iteration

We wrote the recursive calls to
"carry" the min forward until the
base case.

def min(aList):

if len(aList) == 1:

return aList[0]

elif aList[0] > aList[1]:

return min(aList[1:])

else:

return min(aList[0:1] + aList[2:])

def min(aList):

minSoFar = aList[0]

for x in aList[1:]:

if x < minSoFar:

minSoFar = x

return minSoFar

14

minSoFar is an accumulator

variable! Very common with loops

Two exercises on for

for x in [0,1,2,3,4,5,6,7]:

print('x is',x)

1. Modify the loop list to avoid writing the entire list out

2. Modify the loop to compute the sum of the numbers (HINT:
you'll need an accumulator variable)

15

Write factorial with for

def fac(n):

answer = 1

for x in range(1,n+1):

answer = answer * x

return answer

16

sum of a list?

def sum(aList):

answer = 0

for x in aList:

answer = answer + x

return answer

17

Loops aren't just for lists…

for c in 'down with CS!':

print(c)

18

d
o
w
n

w
…

3/7/2019

4

Iterating through sequences

• We have mostly been using the in keyword
with for to access one element at a time

for x in [2,22,222,2222]

print(x)

• There is another common approach…

19

Two kinds of for loops

Element-based Loops

i

0 1 2

Index-based Loops

sum = 0

for x in aList:

sum += x

sum = 0

for i in :

sum +=

aList = [42, -5, 10]aList = [42, -5, 10]

x

20

Two kinds of for loops

Element-based Loops Index-based Loops

sum = 0

for x in aList:

sum += x

sum = 0

for i in range(len(aList)):

sum += aList[i]

aList[i]

aList = [42, -5, 10]

x

i

0 1 2
aList = [42, -5, 10]

21

Write a function to print a number of “hello” based
on the given parameter, using a for loop.

print_hello(3)  “1 hello 2 hello 3 hello”

for loop exercise

def print_hello(n):

str = ‘’

for i in range(1, n+1):

str += str(i) + ‘hello ‘

return str
def print_hello(n):

str = ‘’

for i in range(1, n):

str += str(i) + ‘hello ‘

str += str(n) + ‘hello’

return str

