
3/18/2019

1

2D Array, Nested Loops

One dimensional arrays and lists

• We have learned lists and some applications.

• For example, for a given list of numbers a_list

– Compute the sum

– Compute the average

def compute_sum(a_list):
sum = 0
for i in range(len(a_list)):

sum += a_list[i]
return sum

def compute_avg(a_list):
sum = compute_sum(a_list)
return sum / len(a_list)

2D arrays and lists
• Many other applications require 2D arrays and lists

• For example, if we want to compute the average test
scores of a class in which we have n students and k
tests. The data will look something like the following.

• In your up-coming labs and homework you will see
other applications.

• We usually need nested loops to handle 2D data.

Name/Test Test1 Test2 Test3

Allan Johnson 88 82 91

Marco Lima 83 79 86

Jane Rubio 77 88 93

Maria Zhang 85 86 92

Sizing up arrays…

How could we create this rectangular array of 0s?

or

x = 5*[3*[0]]

x = 3*[5*[0]]

[[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0]]

4

or

x = 5*[3*[0]]

x = 3*[5*[0]]

[[0,0,0,0,0],

[0,0,0,0,0],

[0,0,0,0,0]]

Sizing up arrays…

How could we create this rectangular array of 0s?

5

Try ref_copy.py

3/18/2019

2

What's really going on?

x = 3*[5*[0]]

inner = 5*[0]

x = 3*[inner]

list

x

list

list

list

inner

inner

inner

copies the list reference,

not the list data

"shallow copy"

7

Safely creating arrays…

def create_one_row(width):

""" does just that """

row = [] # start with nothing

for col in range(width):

row = row + [0]

return row

So, how would you

create a list of rows!?

loop and append!

8

Safely creating arrays…

def create2d_array(width, height):

""" does just that """

x = [] # start with nothing

for row_count in range(height):

row = [0] * width

x = x + [row]

return x

the same approach as

before!

9

24_create_arrays.py

Exercise

def mystery(x):

""" what happens to x ? """

NUM_ROWS = len(x)

NUM_COLS = len(x[0])

for row in range(0,NUM_ROWS):

for col in range(0,NUM_COLS):

if row == col:

x[row][col] = 42

else:

x[row][col] += 1

1 2 3 4

5 6 7 8

9 10 11 12

Before

After

x

x

Starting with the 2d array x

shown here, what are the values

in x after running this code?

row 0

row 1

row 2

col 0 col 1 col 2 col 3

What are the resulting values in x?

10

Exercise

def mystery(x):

""" what happens to x ? """

NUM_ROWS = len(x)

NUM_COLS = len(x[0])

for row in range(0,NUM_ROWS):

for col in range(0,NUM_COLS):

if row == col:

x[row][col] = 42

else:

x[row][col] += 1

1 2 3 4

5 6 7 8

9 10 11 12

Before

After

x

x

Starting with the 2d array x

shown here, what are the values

in x after running this code?

row 0

row 1

row 2

col 0 col 1 col 2 col 3

What are the resulting values in x?

11

42 3 4 5

6 42 8 9

10 11 42 13

$Maximum Profit$

Your stock's prices by the day :

A good investment strategy: maximize your profit!

prices = [40, 80, 10, 30, 27, 52, 5, 15]

Day Price Stocks valid to sell

0 40.0 40.0

1 80.0 40.0, 80.0

2 10.0 40.0, 80.0, 10.0

3 30.0 40.0, 80.0, 10.0, 30.0

4 27.0 …

5 52.0 …

6 5.0 …

7 15.0 …

you must sell after you buy.12

3/18/2019

3

>>> diff([7,3],[0,6])

1

def diff(lst1, lst2):

Return the minimum difference between one value from lst1 and one value from lst2.

Example:

lst1 and lst2 will be lists of numbers

Only consider absolute differences.

smallest difference

13

>>> diff([7,3],[0,6])

1

def diff(lst1, lst2):

Return the minimum difference between one value from lst1 and one value from lst2.

Example:

lst1 and lst2 will be lists of numbers

Only consider absolute differences.

smallest difference

14

min_diff_so_far = 9999999

for value1 in lst1:

for value2 in lst2:

diff = abs(value1 - value2)

if diff < min_diff_so_far:

min_diff_so_far = diff

return min_diff_so_far

How to computer the maximum difference?

A few matrix and array problems

15

Given a matrix (2D array with equal
dimension), how to compute the sum for the
top-right half?

[[3,2,6,8],

[9,2,5,7],

[0,3,2,3],

[1,2,3,4]]

The result should be 42

The key is to figure out the indices

16

[[3,2,6,8],

[9,2,5,7],

[0,3,2,3],

[1,2,3,4]]

When row is 0, column goes from 0 to 3
When row is 1, column goes from 1 to 3
When row is 2, column goes from 2 to 3
When row is 3, column goes from 3 to 3

0
1
2
3

rows

0 1 2 3 columns

for row in range(4):
for col in range(row, 4):

do work

def sumUpperRight(matrix):
''' Sum up the upper-right corner of a matrix. Matrix is
a 2D array with equal dimensions '''

sum = 0
for row in range(len(matrix)): # row

for col in range(row, len(matrix[0])): # column
sum += matrix[row][col]

return sum

matrix = [[3,2,6,8],
[9,2,5,7],
[0,3,2,3],
[1,2,3,4]]

value = sumUpperRight(matrix)
print('the sum of right upper corner is ', value)

Given a matrix (2D array with equal
dimension), how to compute the maximum for
each row and each column?

compute row max for a given ‘row’
rowMax = matrix[row][0]
for i in range(len(matrix[row])):

if matrix[row][i] > max:
rowMax = matrix[row][i]

But how to go through a column to compute the maximum?

compute column max for a given ‘column’
colMax = matrix[0][col]
for i in range(len(matrix)):

if matrix[i][col] > max:
rowMax = matrix[i][col]

3/18/2019

4

In addition to the row and column maximum,
find the maximum of the entire matrix?

def findMax(matrix, rowMax, colMax):
''' Given a matrix, find and return the global max, an

array of row max and an array of column max '''

max = matrix[0][0] # current max
for i in range(len(matrix)): # find each row max

rowMax[i] = findRowMax(matrix, i)
if rowMax[i] > max:

max = rowMax[i]

for i in range(len(matrix[0])): # find each column max
colMax[i] = findColMax(matrix, i)
if colMax[i] > max:

max = colMax[i]

return max

