2D Array, Nested Loops

2D arrays and lists
* Many other applications require 2D arrays and lists
* For example, if we want to compute the average test
scores of a class in which we have n students and k
tests. The data will look something like the following.

82 91

Allan Johnson 88

Marco Lima 83 79 86
Jane Rubio 77 88 93
Maria Zhang 85 86 92

* In your up-coming labs and homework you will see
other applications.

¢ We usually need nested loops to handle 2D data.

Sizing up arrays...

How could we create this rectangular array of 0s?

x = 3*[5*[0]

3/18/2019

One dimensional arrays and lists

* We have learned lists and some applications.

* For example, for a given list of numbers a_list

— Compute the sum def compute_sum(a_list):

sum=0

foriin range(len(a_list)):
sum += a_list[i]

return sum

— Compute the average

def compute_avg(a_list):
sum = compute_sum(a_list)
return sum / len(a_list)

Sizing up arrays...

How could we create this rectangular array of 0s?
[[0,0,0,0,0],
[0,0,0,0,0],
[0,0,0,0,0]]

%

= 3*[5*[0] 1

or

»®
]

5*[3*[0] 1

Try ref_copy.py

createRefCopy (]

x = 3% [&5 (0]]
x

default, Dec

0, 0,0,0,0], [0, 0,0, 0,0]]

701, 13, 0.0, 0, 0)

What's really going on?

x = 3*%[5*[0]]
|

inner = 5*[0]

“shallow copy"

copies the list reference,
x = 3*[inner] not the list data

Safely creating arrays...

def create2d array(width, height):
" does just that """

x =[] # start with nothing

for row_count in range(height):
row = [0] * width
x = x + [row]

return x

the same approach as
before!

24_create_arrays.py

Exercise X Before
row 0 —= 1 2 3 4
wi—| 5] 6| 7] 8
row2 — 9 (10 (11 |12

0 coll col2 col3

def mystery(x):
""" what happens to x ? """

NUM_ROWS = len (x)
NUM_COLS = len(x[0])
X After
for row in range(0,NUM ROWS):
for col in range(0,NUM COLS): mnn“
if row == col: 6 42 8 9
x[row] [col] = 42 10 11 42 13
else:
x[row] [col] += 1 What arethe resuiting values inx?

3/18/2019

Safely creating arrays...

def create_one_row(width):
"N does just that """

row = [] # start with nothing
for col in range(width): # loop and append!
row = row + [0]

return row

So, how would you
create a list of rows?

Exercise X Before

row 0 —= 1 2 3 4

rowl— [5 6 7 8

rowz— | 9 |10 |11 |12

cl0 coll col2 col3

def mystery (x):
""" what happens to x ? """

NUM_ROWS = len(x)
NUM_COLS = len(x[0])

X After

for row in range(0,NUM ROWS):
for col in range(0,NUM COLS):

if row == col:
x[row] [col] = 42
else:

What are the resulting values in x?

x[row] [col] += 1

$Maximum Profit$

Your stock's prices by the day :
prices = [40, 80, 10, 30, 27, 52, 5, 15]

A good investment strategy: maximize your profit!

Day Price Stocks valid to sell

0 40.0 40.0

1 80.0 40.0, 80.0

2 10.0 40.0, 80.0, 10.0

3 30.0 40.0, 80.0, 10.0, 30.0
4 27.0

5 52.0

6 5.0

7 15.0

you must sell after you buy.

3/18/2019

Example Example

1 >>> diff([7,3],[0,6 1 >>> diff([7,3],[0,6
smallest difference 7> eI 1060) smallest difference > ¢ 17.31,10.61)
‘ Return the minimum difference between one value from Ist1 and one value from Ist2 ‘ Return the minimum difference between one value from Ist1 and one value from Ist2.

absolute differen

def Aiff(lstl, 1st2): Onlyconsider absolute differences def diff(lstl, lst2): Onveon

Ist1 and Ist2 will be lists of numbers Ist1 and Ist2 will
min_diff so_far = 9999999
for valuel in 1lstl:

for value2 in 1lst2:
diff = abs(valuel - value2)
if diff < min diff_so_far:
min diff so_far = diff
return min_diff_so_far

How to computer the maximum difference?

A few matrix and array problems ‘The key is to figure out the indices
0123 P columns
Given a matrix (2D array with equal ol [13,2,6,8]
dimension), how to compute the sum for the rows e
. A |1 [9,2,5,71,
top-right half? 5 [0,3,2,3],
[r3,2,6,81, 3] [1,2,3,4]]
[9,2,5,7] When row is 0, column goes from O to 3
rer=r 4 When row is 1, column goes from 1 to 3
[0 ’ 3 ’ 2 ’ 3] ’ When row is 2, column goes from 2 to 3
[1,2,3,4]] When row is 3, column goes from 3 to 3

for row in range(4):
for col in range(row, 4):
do work

The result should be 42

Given a matrix (2D array with equal

def sumUpperRight(matrix):) . dimension), how to compute the maximum for
" Sum up the upper-right corner of a matrix. Matrix is
a2Darray with equal dimensions ™ each row and each column?
sum=0
for row in range(len(matrix)): #row # compute row max for a given ‘row’
for col in range(row, len(matrix[0])): # column rowMax = matrix[row][0]

foriin range(len(matrix[row])):
if matrix[row][i] > max:
rowMax = matrix[row][i]

sum += matrix[row][col]
return sum

matrix = [[3,2,6,8],

[9,2,5,7], i
[0,3,2,3], But how to go through a column to compute the maximum?
[1,2,3,4]]

value = sumUpperRight({matrix) . # compute column max for a given ‘column’

print(‘the sum of right upper corner is ', value) colMax = matrix[0][col]

foriin range(len(matrix)):
if matrix[i][col] > max:
rowMax = matrix[i][col]

In addition to the row and column maximum,
find the maximum of the entire matrix?

def findMax(matrix, rowMax, colMax):
"' Given a matrix, find and return the global max, an
array of row maxand an array of columnmax "'

max = matrix[0][0] # current max
foriinrange(len(matrix)): #find each row max
rowMax[i] = findRowMax(matrix, i)
if rowMax[i] > max:
max = rowMax[i]

foriin range(len(matrix[0])): # find each column max
colMax([i] = findColMax(matrix, i)
if colMax[i] > max:
max = colMax([i]

return max

3/18/2019

