
3/20/2019

1

More 2D Array and Loop Examples
Functions and Parameters

A few matrix and array problems

2

Given a matrix (2D array with equal
dimension), how to compute the sum for the
top-right half?

[[3,2,6,8],

[9,2,5,7],

[0,3,2,3],

[1,2,3,4]]

The result should be 42

The key is to figure out the indices

3

[[3,2,6,8],

[9,2,5,7],

[0,3,2,3],

[1,2,3,4]]

When row is 0, column goes from 0 to 3
When row is 1, column goes from 1 to 3
When row is 2, column goes from 2 to 3
When row is 3, column goes from 3 to 3

0
1
2
3

rows

0 1 2 3 columns

for row in range(4):
for col in range(row, 4):

do work

def sum_upper_right(matrix):
''' Sum up the upper-right corner of a matrix. Matrix is
a 2D array with equal dimensions '''

sum = 0
for row in range(len(matrix)): # row

for col in range(row, len(matrix[0])): # column
sum += matrix[row][col]

return sum

matrix = [[3,2,6,8],
[9,2,5,7],
[0,3,2,3],
[1,2,3,4]]

value = sum_upper_right(matrix)
print('the sum of right upper corner is ', value)

matrix_tophalf.py

Given a matrix (2D array with equal
dimension), how to compute the maximum for
each row and each column?

compute row max for a given ‘row’
row_max = matrix[row][0]
for i in range(len(matrix[row])):

if matrix[row][i] > row_max:
row_max = matrix[row][i]

But how to go through a column to compute the maximum?

compute column max for a given ‘column’
col_max = matrix[0][col]
for i in range(len(matrix)):

if matrix[i][col] > col_max:
col_max = matrix[i][col]

In addition to the row and column maximum,
find the maximum of the entire matrix?

def find_max(matrix, row_max, col_max):
''' Given a matrix, find and return the global max, an

array of row max and an array of column max '''

max = matrix[0][0] # current max
for i in range(len(matrix)): # find each row max

row_max[i] = find_row_max(matrix, i)
if row_max[i] > max:

max = row_max[i]

for i in range(len(matrix[0])): # find each column max
col_max[i] = find_col_max(matrix, i)
if col_max[i] > max:

max = col_max[i]

return max

array_max.py

3/20/2019

2

Functions and Parameters

• We’ve learned how to develop functions

def find_max(a_list):
max = a_list[0]
for i in range(len(a_list)):

if a_list[i] > max:
max = a_list[i]

return max

def sum_list(aList):
sum = 0
for i in range(len(a_list)):

sum += a_list[i]
return sum

• In both cases, ‘a_list’ is called a parameter for the
function

• A function can have multiple parameters
• Two types of parameters, mutable and immutable
• Let’s try out the examples (param_passing.py)

7

Pass By Value: parameters immutable

7

fav

fav

PASS

BY

VALUE

“Pass by value" means that the data's value is copied when sent to a function...

42

type: int

type: int

def main()

""" calls conform """

print(" Welcome to Conformity, Inc. ")

fav = 7

conform(fav)

print(" My favorite number is", fav)

def conform(fav)

""" sets input to 42 """

fav = 42

return fav

8

Passing by reference: parameters are mutable

def main()

""" calls conform2 """

print " Welcome to Conformity, Inc. "

fav = [7, 11]

conform2(fav)

print(" My favorite numbers are", fav)

def conform2(fav)

""" sets all of fav to 42 """

fav[0] = 42

fav[1] = 42

What gets passed

by value here?

fav
fav[0] fav[1]

7 11

fav

type: list

type: list

9

def main()

""" calls conform2 """

print " Welcome to Conformity, Inc. "

fav = [7, 11]

conform2(fav)

print(" My favorite numbers are", fav)

def conform2(fav)

""" sets all of fav to 42 """

fav[0] = 42

fav[1] = 42

Passing list content by reference…

7 11

and it can change
data elsewhere!

The reference
is copied, i.e.,
passed by
value, but the
contents arn’t !

4242

fav

fav
fav[0] fav[1]

10

Watch out!

You can change the contents of lists in

functions that take those lists as input.

Those changes will be visible everywhere.

(actually, lists or any mutable objects)

(immutable objects are safe, however)

11

But lists are passing by value!!!

def main()

""" calls conform3 """

print " Welcome to Conformity, Inc. "

fav = [7, 11]

conform3(fav)

print(" My favorite numbers are", fav)

def conform3(fav)

""" creates a new fav!!! """

fav = [42, 42]

fav
fav[0] fav[1]

7 11

fav

type: list

type: list

12

3/20/2019

3

def main()

""" calls conform3 """

print " Welcome to Conformity, Inc. "

fav = [7, 11]

conform3(fav)

print(" My favorite numbers are", fav)

def conform3(fav)

""" creates a new fav!!! """

fav = [42, 42]

But lists are passing by value!!!

fav

fav
7 11

fav[0] fav[1]

13

42 42

fav[0] fav[1]

Mutable vs. Immutable

dictionary

list

tuple

string

int

float

bool

x
x[0] x[1] x[2]

Reference

Pointer

id

x = [5,42,'hi']

5 42 'hi'

s

'hi'

s = 'hi'

Pass by REFERENCE

Lists and dictionaries are handled by
reference (the variables really hold a
memory address)

Other types of data, incl. strings, are
handled by value: they hold the actual data

14

Pass by VALUE

42

75

70

int

int

int

list

x

We can
equally well
imagine them
as vertical
structures.

Lists’ flexibility

Lists can hold ANY type of data

x = [42, 75, 70] 42 75 70

int int intlist

x

15

Lists’ flexibility

Lists can hold ANY type of data

42.0 75.0 70.0

double double doublelist

x

42 7 -11

int int intlist

x

“go” “red”
String String Stringlist

x

16

2d lists or arrays

Lists can hold ANY type of data -- including lists !

list

x

x = [[1,2,3,4], [5,6], [7,8,9,10,11]]

17

list

x

2d arrays

list

list

list

x[0]

x[1]

x[2]

Lists can hold ANY type of data -- including lists !

x = [[1,2,3,4], [5,6], [7,8,9,10,11]]

18

3/20/2019

4

list

x

Jagged arrays

list

list

list

x[0]

x[1]

x[2]

Lists can hold ANY type of data -- including lists !

x = [[1,2,3,4], [5,6], [7,8,9,10,11]]

Rows within 2d arrays need not be the same length
19

Rectangular arrays

list

x

list

list

list

x[0]

x[1]

x[2]

How many rows does x have, in general ?

How many columns does x have, in general ?

What value is changed with x[1][2]=42 ?

x[2][3]

x[0][0]

What does x[1] refer to?

20

