Conway's Game of Life Resources

- · A short video on Game of Life
 - https://www.youtube.com/watch?v=CgOcEZinQ2I
- Other applications of the Game
 - Two plain text versions from conwaylife.com: http://www.conwaylife.com/wiki/Plaintext
 - Game of Life Clock:
 - https://www.youtube.com/watch?v=3NDAZ5g4EuU • The original challenge:
 - https://codegolf.stackexchange.com/questions/88783/ build-a-digital-clock-in-conways-game-of-life

white cells are empty

2D Array and Matrix

Application: Game of Life

Problem 1 -- Life

Grid World

life out there

Problem 1 -- Life

Grid World

white cells are empty

1

Problem 1 -- Creating Life

Problem 1 -- Creating Life

Problem 1 -- Details

returns new generation or *array*
For each generation
 0 represents an empty cell
 1 represents a living cell
 outermost edge should <i>always</i> be left empty (even if there are 3 neighbors)
• compute <i>all</i> cells based on their <i>previous</i> neighbors before updating any of them
http://www.math.com/students/wonders/life/life.htm
life out there.

Problem $1 - to \infty$ and beyond!

Let us work out a couple of problems together.

1. Find the neighbors for some special cells in Conway's Game of Life, return them as a list

a) Upper left corner: The cell index is [0][0]. It doesn't have any upper or left neighbors, only the ones on right or below.

0,0	0,1
1,0	1,1

Python code: neighbors = [m[1][0]] + [m[0][1]] + [m[1][1]]

- b) Your work: Finding neighbors for
- upper right corner,
- · lower left corner, and
- lower right corner

2. Place integers 1..9 in a 3x3 matrix, no repetition is allowed, similar to Sudoku. Some cells may have been initially filled correctly. The unfilled cells are marked by -1.

[[1, -1, -1], [-1, -1, 4], [5, 6, -1]]	results in	[[1, 2, 3], [7, 8, 4], [5, 6, 9]]
[[-1, -1, -1], [-1, -1, -1], [-1, -1, -1]]	results in	[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Python list tools needed remove() and pop():

```
n = [i for i in range(1, 10)]
for k in range(len(n)):
    v = randint(1,10)
    if v in n:
        n.remove(v)

m = []
for k in range(len(n)):
    m = m + [n.pop()]
# m = m + [n.pop(0)]
```

Try list_remove_pop.py