
3/25/2019

1

2D Array and Matrix
Application: Game of Life

Conway’s Game of Life Resources

• A short video on Game of Life
– https://www.youtube.com/watch?v=CgOcEZinQ2I

• Other applications of the Game
– Two plain text versions from conwaylife.com:

http://www.conwaylife.com/wiki/Plaintext

– Game of Life Clock:
• https://www.youtube.com/watch?v=3NDAZ5g4EuU

• The original challenge:
https://codegolf.stackexchange.com/questions/88783/
build-a-digital-clock-in-conways-game-of-life

HW 8, Lab -- “Life”

Evolutionary rules

Grid World

• Everything depends on a cell’s

eight neighbors

red cells are alive

white cells are empty

• Exactly 3 neighbors give birth

to a new, live cell!

• Exactly 2 or 3 neighbors keep an

existing cell alive

• Any other number of neighbors kill

the central cell (or keep it dead)

John Conway

3

Problem 1 -- Life

Evolutionary rules

Grid World

• Everything depends on a cell’s

eight neighbors

red cells are alive

white cells are empty

• Exactly 3 neighbors give birth

to a new, live cell!

• Exactly 2 or 3 neighbors keep an

existing cell alive

• Any other number of neighbors kill

the central cell (or keep it dead)

Problem 1 -- Life

Evolutionary rules

Grid World

• Everything depends on a cell’s

eight neighbors

red cells are alive

white cells are empty

• Exactly 3 neighbors give birth

to a new, live cell!

• Exactly 2 or 3 neighbors keep an

existing cell alive

• Any other number of neighbors kill

the central cell (or keep it dead)

Problem 1 -- Life

Evolutionary rules

Grid World

• Everything depends on a cell’s

eight neighbors

red cells are alive

white cells are empty

• Exactly 3 neighbors give birth

to a new, live cell!

• Exactly 2 or 3 neighbors keep an

existing cell alive

• Any other number of neighbors kill

the central cell (or keep it dead)

life out there...

Keep going!

https://www.youtube.com/watch?v=CgOcEZinQ2I
http://www.conwaylife.com/wiki/Plaintext
https://www.youtube.com/watch?v=3NDAZ5g4EuU
https://codegolf.stackexchange.com/questions/88783/build-a-digital-clock-in-conways-game-of-life

3/25/2019

2

Problem 1 -- Creating Life

0 1 2 3 4 50 1 2 3 4 5

0

1

2

3

4

5

0

1

2

3

4

5

next_life_generation(A)

old generation or "array"
returns new generation

or "array"

Problem 1 -- Creating Life

0 1 2 3 4 50 1 2 3 4 5

0

1

2

3

4

5

0

1

2

3

4

5

next_life_generation(A)

old generation or "array"
returns new generation

or "array"

Problem 1 -- Details

For each generation…

• 0 represents an empty cell

• 1 represents a living cell

• outermost edge should

always be left empty (even

if there are 3 neighbors)

• compute all cells based on

their previous neighbors

before updating any of them

http://www.math.com/students/wonders/life/life.html

life out there...

?

next_life_generation(A)

old generation or "array"
returns new generation

or "array"

Problem 1 – to ∞ and beyond!

• Are there stable life configurations?

• Are there oscillating life configurations?

• Are there self-propagating life configurations?

"rocks"

"plants"

"animals"

period 3

period 2

Let us work out a couple of problems together.

1. Find the neighbors for some special cells in
Conway’s Game of Life, return them as a list

a) Upper left corner: The cell index is [0][0]. It doesn’t have
any upper or left neighbors, only the ones on right or
below.

0,0 0,1

1,0 1,1

Python code:
neighbors = [m[1][0]] + [m[0][1]] + [m[1][1]]

b) Your work: Finding neighbors for
• upper right corner,
• lower left corner, and
• lower right corner

2. Place integers 1..9 in a 3x3 matrix, no
repetition is allowed, similar to Sudoku. Some
cells may have been initially filled correctly.
The unfilled cells are marked by -1.

[[1, -1, -1],
[-1, -1, 4],
[5, 6, -1]]

results in

[[1, 2, 3],
[7, 8, 4],
[5, 6, 9]]

[[-1, -1, -1],
[-1, -1, -1],
[-1, -1, -1]]

results in

[[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]

3/25/2019

3

Python list tools needed remove() and pop():

n = [i for i in range(1, 10)]
for k in range(len(n)):

v = randint(1,10)
if v in n:

n.remove(v)

m = []
for k in range(len(n)):

m = m + [n.pop()]
m = m + [n.pop(0)]

Try list_remove_pop.py

