
3/29/2019

1

Introduction to Object-Oriented
Programming (OOP)

So far, we have learned
• Circuits and basic hardware components in a

computer

• Assembly programming language

• Python
– Recursion

– Lists

– Functions and parameters

– Loops

• The Python elements we learned can be used
to accomplish some programming tasks as we
have seen.

• However, it is more natural to represent things
in the real world as objects in a programming
language!

• For example,

– A car that has an engine, a transmission, … that
can move under some instructions …

– A dog that can walk and bark …

– A bird that can fly …

– A book that has chapters and sections, and can be
flipped through (read) …

Think, for example, if you are asked to
build a program to maintain the
information about a collection of books
that contains title, author, publisher, date
of publishing, and others, how would you
do it?

One approach would be to use multiple lists or
arrays
• titles
• authors
• publishing_dates
To reference the 4th book in the collection, one
would use titles[3], authors[3], publishing_dates[3]

Another approach would be to define a list (or an
array) of book objects, each of which has an author
field, a title field, a publishing_date field. When
referring to a book, one would use book[3].author,
book[3].title, …

Object Oriented Programming
• An OOP language allows you to create

your own types

• A class is a type

• An object is a particular instance of that
type

• There can be one instance

– Or many instances

• There can be operations (functions, a.k.a.,
methods) that apply to the object.

6

3/29/2019

2

Everything in Python is an object!

Its capabilities depend on its class.

classfunctions

by the way, you can build your own...

"methods"

7

Objects

An object is a structure - like a list - except

(1) Its data elements have names chosen by the programmer.

(2) An object contains its own functions that it can call (use)!

usually called "methods" instead of functions:

__init__ __str__

the constructor the string representation
(for printing)

usually called "fields", "attributes"

8

bigBird = Bird()

bigBird.fly()

bigBird.eat(20)

bigBird.fly()

Here’s what a class may look like (Python syntax)
Compared to what we know already …

The use of “Bird” class

sparrow = Bird()

print(sparrow)

sparrow.fly()

sparrow.eat(20)

sparrow.fly()

The use of “String” class

myString = “Hello World!”

capital = myString.caplitalize()

words = myString.split()

print(capital)

letterO = words[0].endswith(‘o’)

print(letterO)

Date

this is an object of type Date

>>> d = Date(3,30,2011)

>>> print(d)

03/30/2011

This is a class. It is a user-defined datatype

(that you'll build in Lab!)

this calls a CONSTRUCTOR …

the representation of a particular object of type Date

>>> d.is_leap_year()

False

>>> d2 = Date(1,1,2012)

>>> print(d2)

01/01/2012

>>> d2.is_leap_year()

True

the isLeapYearmethod returns

True or False. How does it know

what year to check?

How does it know to return True,

instead of False in this case ??

Another object of type Date -

again, from the constructor.

11

class Date:

""" a blueprint (class) for objects

that represent calendar days

"""

def __init__(self, mo, dy, yr):

""" the Date constructor """

self.month = mo

self.day = dy

self.year = yr

def __str__(self):

""" used for printing Dates """

s = "{:02d}/{:02d}/{:04d}".format(self.month,self.day,self.year)
return s

def is_leap_year(self):

""" anyone know the rule? """

The Date class

C/C++ printf style
string formatting.
See Python string
documentation

12

3/29/2019

3

self is the specific OBJECT THAT

CALLS A METHOD

13

>>> d = Date(11,8,2011)

>>> print(d)

11/08/2011
These methods need
access to the object

that calls them

>>> d.is_leap_year()

False

>>> d2 = Date(1,1,2012)

>>> print(d2)

01/01/2012

>>> d2.is_leap_year()

True

These methods need
access to the object

that calls them

a Leap of faith….

class Date:

def __init__(self, mo, dy, yr): (constructor)

def __str__(self): (for printing)

def is_leap_year(self):

if self.year%400 == 0:

return True

if self.year%100 == 0:

return False

return self.year % 4 == 0

John Herschel

14

Class: a user-defined datatype

Object: data or a variable whose type is a class

Method: a function defined in a class called by an object

Constructor: the __init__ function for creating a new object

d = Date(11, 11, 2011)

d.tomorrow()

print(d)

str: the __str__ function returning a string to print

self: in a class, the name of the object calling a method

constructor

object

method

uses str

d would be named self
inside the Date class...

data members: the data in self: self.day, self.month, self.year

Classes – DIY data

15

Date ids

>>> d = Date(11,8,2011)

>>> print(d)

11/08/2011

>>> d2 = Date(11,9,2011)

>>> print(d2)

11/09/2011

this creates a different Date object!

>>> d == d2

False

>>> d2.yesterday()

>>> d == d2

False

Date ids

>>> d = Date(11,8,2011)

>>> print(d)

11/08/2011

>>> d2 = Date(11,9,2011)

>>> print(d2)

11/09/2011

this initializes a different Date!

>>> d == d2

False

>>> d2.yesterday()

>>> d.equals(d2)

True

Need an equals method to check if their

VALUES are equal, not their MEMORY

ADDRESSES

18

class Date:

def __init__(self, mo, dy, yr):

def __str__(self):

def isLeapYear(self):

def equals(self, d2):

""" returns True if they represent

the same date; False otherwise

"””

equals

19

3/29/2019

4

References

>>> d = Date(11,8,2011)

>>> print(d)

11/08/2011

>>> d2 = d

>>> print(d2)

11/08/2011

>>> d.yesterday()

>>> print(d2)

11/07/2011

We need a way to make a copy
of an object! Simple assignment

will not work!

These refer to the same object!

20

class Date:

def __init__(self, mo, dy, yr):

def __str__(self):

def is_leap_year(self):

def equals(self):

def copy(self):

""" returns a DIFFERENT object w/SAME date value! """

return Date(self.month, self.day, self.year)

copy

Whenever you want to create a brand-new
object, use the appropriate CONSTRUCTOR

21

class Date:

def is_before(self, d2):

""" if self is before d2, this should

return True; else False """

if self.month < d2.month:

return True

if self.day < d2.day:

return True

if self.year < d2.year:

return True

return False

What's wrong? d = Date(1,1,2012)
d2 = Date(11,8,2011)
d.is_before(d2)
True

22

class Date:

def is_before(self, d2):

""" if self is before d2, this should

return True; else False """

if self.year < d2.year:

return True

if self.month < d2.month and self.year == d2.year:

return True

if self.day < d2.day and self.month == d2.month:

return True

return False

Better d = Date(1,1,2012)
d2 = Date(11,8,2011)
d.is_before(d2)
False

23

class Date:

def tomorrow(self):

""" moves the date that calls it ahead 1 day """

monthLen = [0,31,28,31,30,31,30,31,31,30,31,30,31]

fi
rs

t,
 a

d
d

 1
 t

o

s
e
l
f
.
d
a
y

th
en

, a
d

ju
st

 m
o

n
th

 a
n

d

ye
ar

, i
f

n
ee

d
ed

Write this
tomorrow method.

tomorrow()

24

Class: a user-defined datatype

Object: data or a variable whose type is a class

Method: a function defined in a class called by an object

Constructor: the __init__ function for creating a new object

d = Date(11, 11, 2011)

d.tomorrow()

print(d)

str: the __str__ function returning a string to print

self: in a class, the name of the object calling a method

constructor

object

method

uses str

d would be named self
inside the Date class...

design-it-yourself!

data members: the data in self: self.day, self.month, self.year

Classes – DIY data

25

3/29/2019

5

Operator Overload

• If we define a class of objects, we may be able to
or need to reuse some common operators

• For example, to compare two date objects, can
we say something like ‘d1 > d2’ if d1 is AFTER d2?

• Or for two objects in a rational number class, can
we say something like ‘r1 > r2’?

• Python and any other modern programming
languages allow ‘operator overload,’ that is, re-
define the meaning of a common operator.

The example of the Rational class
• From our text book

• r1 = 1/3, r2 = 2/5, how to do operations such
as r1 + r1, or comparisons such as if r1 == r2,
or if r1 > r2?

• We need overload the operators such as < or
==

• How to do it?

– Define specially named methods, __add__(),
__eq__(), __ge__(), __gt__()

Show Rational.py

