Introduction to Object-Oriented
Programming (OOP)

* However, it is more natural to represent things
in the real world as objects in a programming
language!

* For example,

— A car that has an engine, a transmission, ... that
can move under some instructions ...

— A dog that can walk and bark ...
— A bird that can fly ...

— A book that has chapters and sections, and can be
flipped through (read) ...

One approach would be to use multiple lists or
arrays

* titles

* authors

* publishing_dates

To reference the 4t" book in the collection, one
would use titles[3], authors[3], publishing_dates[3]

Another approach would be to define a list (or an
array) of book objects, each of which has an author
field, a title field, a publishing_date field. When
referring to a book, one would use book[3].author,
book[3].title, ...

So far, we have learned

« Circuits and basic hardware components in a
computer

Assembly programming language

Python

— Recursion

— Lists

— Functions and parameters

— Loops

* The Python elements we learned can be used

to accomplish some programming tasks as we
have seen.

Think, for example, if you are asked to
build a program to maintain the
information about a collection of books
that contains title, author, publisher, date

of publishing, and others, how would you
do it?

Object Oriented Programming

* An OOP language allows you to create

your own types

* Aclassis a type

* An object is a particular instance of that

type
There can be one instance
— Or many instances

There can be operations (functions, a.k.a.,
methods) that apply to the object.

3/29/2019

Everything in Python is an object!

Its capabilities depend on its class.

T T

functions class

"methods"

by the way, you can build your own...

Here’s what a class may look like (Python syntax)

bigBird = Bird()

bigBird.fly()

self.weight H
self.lightenTheLoad()

C"FLYING!!1I™) bigBird.eat(20)

def lightenTt
('Splat!")

Fof bigBird.fly()
self.weight - self.weight - food

_— Thisis aclass. Itis a user-defined datatype
Date e (that you'll build in Lab!)

>>> d = Date(3,30,2011) _— this calls a CONSTRUCTOR
— ° i —
>>> print(d
03/30/2011 ——— this is an object of type Date
~
~

T the representation of a particular object of type Date

>>> d.is_leap_year() the isLeapYear method returns
False True of False. How does it know
what year to check?

>>> d2 = Date(1,1,2012)

: ~—__ Another object of type Date -
>>> print(d2) ™ again, from the constructor.
01/01/2012
>>> d2.is_leap_year()

True

————— How does it know to return True
instead of False in this case ?? "

3/29/2019

Objects

An object is a structure - like a list - except

(1) Its data elements have names chosen by the programmer.

usually called "fields", "attributes"
(2) An object contains its own functions that it can call (use)!
—

usually called "methods" instead of functions:

Compared to what we know already ...

The use of “Bird” class The use of “String” class

sparrow = Bird() myString = “Hello World!”
print(sparrow) capital = myString.caplitalize()
sparrow.fly() words = myString.split()
sparrow.eat(20) print(capital)

sparrow.fly() letterO = words[0].endswith(‘0’)

print(letterO)

Date:

""" a blueprint (class) for objects The Date class
that represent calendar days
init (self, mo, dy, yr):
""" the Date constructor """
self.month = mo
self.day = dy
self.year = yr

str (self):
""" used for printing Dates """

s = "{:02d}/{:02d}/{:04d}".format (self.month, self.day,self.year)
return s

is_leap year(self):
""" anyone know the rule? """

C/C++ printf style
string formatting.
See Python string
documentation

is the specific OBJECT THAT
self CALLS AMETHOD

>>> d = Dateill 8,2011)

>>> print(d) —
11/08/2011

These methods need
— access to the object
that calls them

P
>>> d.is_léap_year ()
False

>>> d2 = Date(1,1,2012)

>>> print (d2)

~_ These methods need
01/01/2012 " access to the object
>>> d2.is_leap_year{)———————————— that calls them
True

Classes — DIY data

Class: a user-defined datatype

Object: data or a variable whose type is a class

constructor
#ect—d = Date(11, 11, 2011)
d. tomorrow ()
print (d) T method d would be named self

inside the Date class...
uses str

Method: a function defined in a class called by an object
self: inaclass, the name of the object calling a method
Constructor: the __init function for creating a new object
str: the _str__ function returning a string to print

data members: the datain self: seif.day, self.month, self.year

Date ids

>>> d = Date(11,8,2011)
>>> print(d)
11/08/2011 thisintaizes a different Date!

-

>>> d2 = Date(11,9,2011) ©
>>> print(d2)
11/09/2011

Need an equals method to check if their
VALUES are equal, not their MEMORY
ADDRESSES
>>> d2.yesterday ()
>>> d == d2
>>> d.equals (d2
False £ (B2
True

3/29/2019

a Leap of faith.

Date:
def _init_ (self, mo, dy, yr): (constructor)
def _str__(self): (for printing)

is_leap_year(self):
self.year%400 == 0:
True
self.year%100 == 0
False
self.year % 4

John Herschel

2.2.1 What years are leap years?
The Gregorian calendar has 97 leap years every 400 years:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap yef

Date ids

>>> d = Date(11,8,2011)

>>> print(d)

11/08/2011 /\h\s creates a different Date object!
_

-

/

>>> d2 = Date(11,9,2011)
>>> print(d2)
11/09/2011

>>> d2.yesterday ()
>>> d == d2 >>> d == d2
False

False

equals

Date:
def _ init_ (self, mo, dy, yr):
def __str__(self):
def isLeapYear (self):

equals (self, d2):
""" returns True if they represent
the same date; False otherwise

References

>>> d = Date(11,8,2011)
>>> prigt(d)

11/08/2011 These refer to the same object!

>>>d2 =d

>>> print(d2)
11/08/2011

>>> d.yesterday ()
>>> print(d2)
11/07/2011

We need a way to make a copy
of an object! Simple assignment
will not work!

d = Date(1,1,2012)
d2 = Date(11,8,2011)
d.is_before(d2)
True

What's wrong?

Date:
is_before(self, d2):
""" if self is before d2, this should

return True; else False """

if self.month < d2.month:
True

if self.day < d2.day:
True

if self.year < d2.year:
True

False

tomorrow()

Date:

tomorrow (self) :
""" moves the date that calls it ahead 1 day """
monthLen = [0,31,28,31,30,31,30,31,31,30,31,30,31]

first, add 1to
self.day

then, adjust month and
vear, if needed

3/29/2019

Date: COpy

__init (self, mo, dy, yr):
__str__(self):

is_leap_year (self):

equals (self) :

copy (self) :
""" returns a DIFFERENT object w/SAME date value! """
return Date(self.month, self.day, self.year)

Whenever you want to create a brand-new
object, use the appropriate CONSTRUCTOR <&

Better d = Date(1,1,2012)
d2 = Date(11,8,2011)
d.is_before(d2)

Date:
ate False

is before(self, d2):

"mm if self is before d2, this should
return True; else False """
if self.year < d2.year:
True

if self.month < d2.month and self.year == d2.year:
True

if self.day < d2.day and self.month == d2.month:
True

False

design-it-yourself!
=

Classes — DIY data =

Class: a user-defined datatype
Object: data or a variable whose type is a class

__ constructor

wier —d = Date(11, 11, 2011)

d. tomorrow ()

print (d) 7 method d would be named self

inside the Date class...
uses str

Method: a function defined in a class called by an object
self: inaclass, the name of the object calling a method
Constructor: the __init__ function for creating a new object
str: the _str_ function returning a string to print

data members: the datain self: seif.day, self.month, self.year”

Operator Overload

If we define a class of objects, we may be able to
or need to reuse some common operators

For example, to compare two date objects, can
we say something like ‘d1 > d2’ if d1 is AFTER d2?
Or for two objects in a rational number class, can
we say something like ‘r1 >r2’?

Python and any other modern programming
languages allow ‘operator overload,’ that is, re-
define the meaning of a common operator.

3/29/2019

The example of the Rational class
* From our text book
* r1=1/3,r2=2/5, how to do operations such
asrl +rl, or comparisons such as if rl ==r2,
orifrl1>r2?
* We need overload the operators such as < or
* How to do it?
— Define specially named methods, __add__ (),
eq(), _ge (), _8t_ ()

Show Rational.py

