Introduction to Object-Oriented
Programming (OOP) Il

What does it mean?

* An operator such as ‘==/, ‘>’ can be associated
with a function to reflect its meaning.

* E.g., in our Date class, we have three functions
—is_equal(), is_before(), is_after()

— When comparing two Date objects, we'd say
dl.is_equal(d2), d1.is_before(), d1.is_after()

* If we implement operator overloads for the
Date class, we could have said
—dl==d2,d1<d2,dl>d2

Overloading >*

class Date:

def __gt_ (self, other):
return self.is_after(other)

Overloading ‘>=’

class Date:

def __ge_ (self, other):
return self.is_after(other) or \
self.is_equal(other)

4/1/2019

Quick review: operator overloading

* We have learned some basic features of OOP
— Constructor: def __init_ (self):
— String representation: def __str__ (self):,
ordef __repr__ (self):
— Method within a class: def tomorrow(self):

— Object attributes (object variables ...)
self.year, self.month, self.day.

* We also discussed the topic of operator
overloading

Overloading ‘==’

class Date:

def __eq__(self, other):
if self.year == other.year and \
self.month == other.month and \
self.day == other.day:
return True
else:
return False

If the function is_equal() has been defined, we can do ...

class Date: class Date:

def __eq__ (self, other):

def __eq_ (self, other)
return self.is_equal(other)

if self.is_equal(other):
return True

else:
return False

str()vs_repr_ ()

* In Python, when printing an object, two
methods can play roles, __str__() and
__repr__{()

* The difference is illustrated well by this post,
though the syntax of the post is Python 2.x

https://www.geeksforgeeks.org/str-vs-repr-in-python

e Let us walk through the example

https://www.geeksforgeeks.org/str-vs-repr-in-python

4/1/2019

The Complex class is defined by the programmer (YOU!), in

The datetime class is provided by Python, in which the __repr__() and __str__() are defined at your wish.

which the __repr__() and __str__() are already R
defined.

g example shows the system-define thon) class real, imagl:
-) h 1

ime
time.datetime.now()

Python 3.6.8 [Anaconda custom (64-bit)| (default, [
Gec 7.3.0] on

", “copyright", "credits® or “license(]"

[Anaconda custom (64-Bit)| (dsfault, Df
0 1inux
opyright", "eredits® or "license()* 4

inux/accounts/COURSES /caq
BY START: /nfs/unizspace/linux/accounts/COURSES/csc |
flecturaz/30_COP_I1/fepr-atr.py

10, 36, 57, 678945)

10 + 120
Rational(10, 20

Show repr-str.py

Class exercises Class exercises

Given a Book class as follows, define methods to overload If the comparison is based on the attribute ‘title’, write
>, ‘<, *>=, ‘<=', and ‘==', if the comparison is based on the the method that overloads ‘>’ using string comparison.
attribute ‘pub_year’

class Book: class Book:
def __init_ (self, title, author, pub_year): def __init_ (self, title, author, pub_year):
Create an object Create an object
self.author = author self.author = author # a string
self.title = title self.title = title # a string
self.pub_year = pub_year # an integer self.pub_year = pub_year # an integer

Class exercises Other operator overload

If the comparison is based on the attribute ‘pub_year’, if . Python supports more operator overload
‘pub_year’ is the same, then check ‘title’, if title is the
same, check ‘author’. —__he__:not equal

— __contains__ : membership check
— __add__: add to the collection (+)

class Book:
— __iadd_:for +=
def __init_ (self, title, author, pub_year):

) * See book_shelf demonstration
Create an object -
self.author = author # a string
self.title = title # a string
self.pub_year = pub_year # an integer

book.py, book_shelf.py, book_shelf_app.py

