
4/1/2019

1

Introduction to Object-Oriented
Programming (OOP) II

Quick review: operator overloading

• We have learned some basic features of OOP
– Constructor: def __init__(self):

– String representation: def __str__(self):,
or def __repr__(self):

– Method within a class: def tomorrow(self):

– Object attributes (object variables …)
self.year, self.month, self.day.

• We also discussed the topic of operator
overloading

What does it mean?

• An operator such as ‘==‘, ‘>’ can be associated
with a function to reflect its meaning.

• E.g., in our Date class, we have three functions
– is_equal(), is_before(), is_after()

– When comparing two Date objects, we’d say
d1.is_equal(d2), d1.is_before(), d1.is_after()

• If we implement operator overloads for the
Date class, we could have said
– d1 == d2, d1 < d2, d1 > d2

Overloading ‘==‘
class Date:

…
def __eq__(self, other):

if self.year == other.year and \
self.month == other.month and \
self.day == other.day:
return True

else:
return False

class Date:
…
def __eq__(self, other):

if self.is_equal(other):
return True

else:
return False

class Date:
…
def __eq__(self, other):

return self.is_equal(other)

If the function is_equal() has been defined, we can do …

Overloading ‘>‘

class Date:
…
def __gt__(self, other):

return self.is_after(other)

Overloading ‘>=‘

class Date:
…
def __ge__(self, other):

return self.is_after(other) or \
self.is_equal(other)

__str__() vs __repr__()

• In Python, when printing an object, two
methods can play roles, __str__() and
__repr__()

• The difference is illustrated well by this post,
though the syntax of the post is Python 2.x

https://www.geeksforgeeks.org/str-vs-repr-in-python

• Let us walk through the example

https://www.geeksforgeeks.org/str-vs-repr-in-python

4/1/2019

2

The datetime class is provided by Python, in
which the __repr__() and __str__() are already
defined.

The Complex class is defined by the programmer (YOU!), in
which the __repr__() and __str__() are defined at your wish.

Show repr-str.py

Class exercises

class Book:

def __init__(self, title, author, pub_year):
'''
Create an object
'''
self.author = author
self.title = title
self.pub_year = pub_year # an integer

Given a Book class as follows, define methods to overload
‘>’, ‘<‘, ‘>=‘, ‘<=‘, and ‘==‘, if the comparison is based on the
attribute ‘pub_year’

Class exercises

class Book:

def __init__(self, title, author, pub_year):
'''
Create an object
'''
self.author = author # a string
self.title = title # a string
self.pub_year = pub_year # an integer

If the comparison is based on the attribute ‘title’, write
the method that overloads ‘>’ using string comparison.

Class exercises

class Book:

def __init__(self, title, author, pub_year):
'''
Create an object
'''
self.author = author # a string
self.title = title # a string
self.pub_year = pub_year # an integer

If the comparison is based on the attribute ‘pub_year’, if
‘pub_year’ is the same, then check ‘title’, if title is the
same, check ‘author’.

Other operator overload

• Python supports more operator overload

– __ne__ : not equal

– __contains__ : membership check

– __add__ : add to the collection (+)

– __iadd_ : for +=

• See book_shelf demonstration

book.py, book_shelf.py, book_shelf_app.py

