
4/15/2019

1

Searching and Sorting (1) DEMONSTRATE SONG.PY,
SONG_APP.PY, ALBUM.PY, AND

ALBUM_APP.PY

How to test functions?
• We just wrote the function createAlbum()

• We can test the function in one of two ways
– Run the Python module by clicking “Run|Module”

from within the IDLE, then execute the command

>>>createAlbum()

at the Python shell prompt

– Alternatively, we can write the function call
directly in the file, “album = createAlbum()”

– If we have multiple functions to test, we can write
a main() function that contains these function
calls.

4/15/2019

2

The main() function for album app Review some of the OOP features
• The len() function

– len(album) comes from the definition of the
__len__() function in the Album class

• The += operator comes from the __iadd__()
function in the album class

• The operation of album = album + song comes
from the __add__() function in the album
class

• The ‘in’ operator comes from the
__contains__() function in the album class

Function code

With above definitions, we can try the
testAdd() function in album_app.py

Search

In our Album class, we developed a search by title method.
The search starts at the very beginning and goes through the
entire list, until we either find the song, or reach the end of
the list without finding a match. Called sequential search.

def searchByTitle(self, titleToSearch):
found = False
i = 0
while found == False and i < len(self):

if self.songs[i].title.lower() == titleToSearch.lower():
found = True

else:
i += 1

if found == True:
return self.songs[i]

else:
return None

What if the titles are alphabetically
ordered …?

"(Everything I Do) I Do It For You", Bryan Adams, 7/27/1991
"End Of The Road", Boyz II Men, 8/15/1992
"Endless Love", Diana Ross and Lionel Riche, 8/15/1981
"Eye Of The Tiger", Survivor, 7/24/1982
"Flashdance ... What A Feeling", Irene Cara, 5/28/1983
"How Deep Is Your Love", Bee Gees, 12/24/1977
"I Will Always Love You", Whitney Houston, 11/28/1992
"Night Fever", Bee Gees, 3/18/1978
"The Theme From 'A Summer Place'", Percy Faith and his orchstra, 2/27/1960
"You Light Up My Life", Debby Boone, 10/15/1977

If we found the current title is ‘I Will Always Love You’ and we are
looking for ‘How Deep Is Your Love,’ do we need to continue?
(Assume the song in red is not in the list.)

The answer is NO, we know the titles are SORTED, if we saw ‘I …’ but not
‘How …’, we’d know the song ‘How …’ is not in the list!

Revised search

Let’s revise our search method based on the above
observation …

def searchByTitle(self, titleToSearch): # assume titles are sorted
found = False
i = 0
while found == False and i < len(self):

if self.songs[i].title.lower() == titleToSearch.lower():
found = True

elif self.songs[i].title.lower() > titleToSearch.lower(): # added check
break

else:
i += 1

if found == True:
return self.songs[i]

else:
return None

4/15/2019

3

What’s the difference?

• In the first version (not sorted) of the search,
roughly how long do we have to search to
either find the one we look for, or conclude
that the song is not in the list?

• n steps where n is the number of songs in the
list

• In the second version (sorted), we’d know
much earlier (on the average) that the song is
not in the list!

Wait … we can even do better!
Do we really need to search one-by-one from the beginning?

def binarySearch(self, titleToSearch): # assume titles are sorted
found = False
left = 0
right = len(self)
mid = (left + right) // 2
while found == False and left <= right:

if self.songs[mid].title.lower() == titleToSearch.lower():
found = True
break # leave the loop

elif self.songs[mid].title.lower() > titleToSearch.lower(): # search the left half
right = mid - 1

else: # search the right half
left = mid + 1

mid = (left + right) // 2

if found == True:
return self.songs[mid]

else:
return None

The answer is NO. Binary search is much more faster.

