
4/17/2019

1

Searching and Sorting (2)

Wait … we can even do better!
Do we really need to search one-by-one from the beginning?

def binarySearch(self, titleToSearch): # assume titles are sorted
found = False
left = 0
right = len(self)
mid = (left + right) // 2
while found == False and left <= right:

if self.songs[mid].title.lower() == titleToSearch.lower():
found = True
break # leave the loop

elif self.songs[mid].title.lower() > titleToSearch.lower(): # search the left half
right = mid - 1

else: # search the right half
left = mid + 1

mid = (left + right) // 2

if found == True:
return self.songs[mid]

else:
return None

The answer is NO. Binary search is much more faster.

How to sort a list? (We did it in hw3!)

3

def insertOne(element, aList):

''' Inserts element into its proper place in a sorted list aList.

Input: element is an item to be inserted. aList is a sorted list.

Output: A sorted list.'''

if len(aList) == 0:

return [element]

elif element < aList[0]:

return [element] + aList

else:

return aList[0:1] + insertOne(element, aList[1:])

def sort(aList):

''' sort returns a list of the elements of aList in ascending order.

Input aList: a list '''

if aList == []:

return []

else:

sortedList = sort(aList[1:])

return insertOne(aList[0], sortedList)

4

Sorting Revisited
How to do a selection sort in an Imperative style?

Develop a plan:

Find index of smallest element in list.
Swap that with the first element.
Find index of 2nd smallest element in list.
Swap that with the 2nd element.
Repeat until we run out of elements.

Imperative style – we use loops, break into subtasks,
and change values of variables "in-place."

Subtasks identified:

Swap two elements in a list
Find index of minimum of a list

5

Index of minimum in a list

def indexOfMinimum(aList, startIndex):

''' returns index of the minimum element

at or after startIndex.

'''

minIndex = startIndex

for i in range(startIndex, len(aList)):

if aList[i] < aList[minIndex]:

minIndex = i

return minIndex

6

Swap two elements in a list

def swap(a, b):

''' swaps the values of a and b '''

def main():

aList = [5, 3, 4, 2, 7]

swap(aList[0], aList[3])

print(aList)

Try it with

Doesn't work! Why?

temp = a

a = b

b = temp

4/17/2019

2

7

Swap two elements in a list – 2nd Try

def swap(aList, i, j):

''' swaps the values of aList[i] and aList[j] '''

def main():

aList = [5, 3, 4, 2, 7]

swap(aList, 0, 3)

print(aList)

Try it with

Works! Why?

temp = aList[i]

aList[i] = aList[j]

aList[j] = temp

8

Sorting Revisited

Put the pieces together

def selectionSort(aList):

''' sort aList in an imperative style:

iteratively, subtasks, and in-place '''

for start in range(len(aList)):

minIndex = indexOfMinimum(aList, start)

swap(aList, start, minIndex)

Demonstrate selction-sort.py and album-app.py

Some notes

• Import: note in album-app.py we used

from song import *

from album import *

which means reading the file from song.py and
album.py, making all functions, objects in
these files available for current application.

Handling csv files

• Now let’s make the list of songs into a file. We
then read the song list from a file and make it
available for other applications.

• We will use the csv reading function we
learned a few days ago.

• We then will create a dictionary using the
artist as the key and a list of the songs that
the artist sung as the value.

Demonstrate album-app-d.py

