
4/22/2019

1

Complexity and Big-O

Can computer compute everything???
Why and Why not?

The general answer is NO, computer can’t compute everything!
We will discuss reasons in this section.

Let’s try out the program we know

• Run tower_of_hanoi with 10, 15, 20, 23, 24, or
30 discs …

The Wheat and Chessboard Problem

• The inventor of chess (in some tellings Sessa, an
ancient Indian Minister) request his ruler give him
wheat according to the Wheat and Chessboard
Problem. The ruler laughs it off as a meager prize for
a brilliant invention, only to have court treasurers
report the unexpectedly huge number of wheat
grains would outstrip the ruler's resources.

https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

The problem
1 2 4 8 16 32 …

???

Add them up 1+2+4+… = 1+2+4+…+264 =
18,446,744,073,709,551,615 !!!

What does it have anything to do with
CS?

If your program requires 2n steps to compute
something, it is not practical to expect any
results in a meaningful time frame for the
problem of reasonable large input size n,
e.g., a few tens or a few hundreds.

In our Wheat and Chessboard problem, n = 64.
Steps = 18,446,744,073,709,551,615.
A modern desk-top computer (4GHz) can do roughly 4
billion steps per second. To go through that many
steps, it would take

584,943,368 centuries!!!

https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

4/22/2019

2

Why does this matter?

• Large Scale Data
– Google, Twitter, Facebook.. Big Data

Computers are so fast! But…

5 EXABYTES of new information in 2002

161 EXABYTES of new information in 2006

1200 EXABYTES of new information in 2010

[Lyman 03, Gantz 07, Gantz 10]

2019????

Why does this matter?

• Large Scale Data
– Google, Twitter, Facebook.. Big Data

Computers are so fast! But…

• Limited Resources
– phones, watches, wearable computing

• High Performance Environments
– milliseconds matter

How do we know what matters in code?

1

1 * (n)

1

n+2

How do we know what matters in code?

Pay attention to what changes as the variables increases

n+2

n+5O(n)

Selection sort

def sortByTitle(self):
'''
Sort the album by the title, without change the original data
Here we use insert sort as students saw it in hw3
'''
for i in range(len(self)): # n

minIndex = self.findMinIndex(self.sortedByTitles, i) # n-i
self.swap(minIndex, i, self.sortedByTitles) # 1

22222

)1(22
22

1

nnnn
n

nn
ninsteps

n

i

O(n2)

https://www.youtube.com/watch?v=VH9ZDWAqfY4
https://www.youtube.com/watch?v=VH9ZDWAqfY4
https://www.youtube.com/watch?v=VH9ZDWAqfY4
https://www.youtube.com/watch?v=VH9ZDWAqfY4
https://www.youtube.com/watch?v=3Km1K-DVNNk
https://www.youtube.com/watch?v=3Km1K-DVNNk

4/22/2019

3

Big-O Notation

• No need to count precise number of steps

• Classify algorithms by order of magnitude

– Execution time

– Space requirements

• Big O gives us a rough upper bound

• Goal is to give you intuition

Describing Growth

The first one is constant time O(1), the second one is logarithm time

O(log n), the last one is exponential time O(2n), rest polynomial time

O(nk).

Let’s try the program … bigO.py

For polynomial time For exponential time

Pay attention to the problem size and the actual timing.

http://bigocheatsheet.com/
http://bigocheatsheet.com/

