
Fall 2017 1 Lab 2

CSCI 204 – Introduction to Computer Science II

Lab 2 – Class Design, Inheritance, and Exceptions

1. Objectives
In this lab, you will learn the following:

 Designing and implementing classes;

 Using inheritance to abstract classes at different levels;

 Importing Python packages of your own;

 Using exceptions to handle errors.

2. Preparation

You will need to create and go into the directory for today’s lab, assuming you have followed the

instructions in lab 01 to create a csci204 directory and stored your lab01.txt in that directory.

First start a terminal window. Then create the labs and lab01 directory and move the lab01.txt into

the lab01 directory.

cd ~/
cd csci204/
mkdir labs
mkdir lab01
mv lab01.txt lab01/

If you are not sure how to open a terminal window or what the above commands mean, please review

what you did in last lab.

Now assuming you are in ~/csci204/labs directory, create a directory for today’s lab and go into that

directory.

mkdir lab02
cd lab02

You will be creating some programs while using other existing programs for testing in this lab. Please

copy the given testing files from the course Linux directory using the following Linux command. (Some

of these programs are repeated in the lab description.)

cp ~csci204/2017-fall/student/labs/lab02/* .

Note that there is a dot at the end of the command, which means copying the files to the current place and

keeping the file names. You should see a collection of six test programs.

3. Introduction to Class Inheritance

The inheritance feature in Python allows us to define objects at different levels of abstraction with

common features. Doing so makes programs easier to use and maintain. Let's look at the example from

Fall 2017 2 Lab 2

our textbook. All forms of Publication share some common features such as title and author. Book is a

child-class of Publication which may contain information such as publisher and chapter titles in addition

to the features in Publication while the Article child-class may contain journal title, journal volume, and

such. The following illustration is from our textbook [ref textbook].

Figure 1: Class hierarchy of publications

In this design, the common features in the class Publication such as title and author do not have to be

repeated in the inherited classes such as Book or Article, which simplifies class design a great deal. In this

example, the code for the class Publication and Book may look as follows.

class Publication:
 """ Base class: Publication"""
 def __init__(self, title, author):
 self._title = title
 self._author = author

 def __str__(self):
 return '[' + self._title + '] by ' + self._author + '\n'

class Book(Publication):
 """ Derived class: Book"""
 def __init__(self, title, author, publisher, pub_date):
 super().__init__(title, author) # Invoke parent constructor
 self._publisher = publisher # Attributes in Book only
 self._pub_date = pub_date

 def __str__(self):
 s = super().__str__() # Invoke parent __str__()
 s += 'Publisher: ' + self._publisher + '\n'\
 'Date: ' + self._pub_date + '\n'

Figure 2: Partial implementation of Publication and Book class

In this example, the Book class inherits all features from the Publication class besides its own attributes

of publisher and pub_data. The contents in the Publication class such as author and title need not to be

repeated in the Book child-class, thus simplifying programming and maintenance.

Fall 2017 3 Lab 2

The syntax of Python inheritance is very simple. The child-class, in this case, the Book class, needs to just

include the name of parent class, Publication in its class name definition. In class methods, including the

constructor, a child-class can invoke the parent class methods by having the keyword super() preceding

the method name. If both the parent and child classes have a method with the same name, in our example,

the constructor and the string method, typically you’d invoke the parent’s method first, followed by

additional, optional code in the child class.

Read the above code in Figure 2 carefully and make sure you understand how it works. You can copy the

code into your IDLE and try it out, if you are not 100 percent sure of the meaning of the program.

You will learn and practice the design and implementation of classes with inheritance in this lab.

4. Exercises with Inheritance: A Simple Pet Class

You are going to create a simple Pet class that will model a pet. Start thinking about pets. What types of

attributes and behaviors do pets have? You might be able to come up with many. And, you may discover

some attributes and behaviors that are highly dependent on type of the pet. Consider walking your pet.

Clearly this is not a universal activity for all pets. Would you take your fish for a walk? On the other

hand, some attributes ARE universal. For example, all pets would have a name, and an age. Designing a

class hierarchy involves carefully picking common attributes for all objects of this type, e.g., all features

common to pets, and deciding what attributes are specific for child-classes of objects, e.g., features that

are only for fish, or dog.

Assume, for the sake of simplicity, that all pets that we are interested in have a name and an age. They

can eat, sleep, and walk. Additionally, we'll use an extra attribute called activity to keep track of what

our pet is currently doing, such as eating, sleeping, or walking. So a text description for a generic pet class

would look as follows.

Table 1: Pet class design

Pet

Attributes name

age

activity

Methods walk()

eat()

sleep()

__init__()

__str__()

4.1 Implement the Pet class

This seems like a reasonable start for a generic pet class. Go to IDLE, or using your favorite text editor to

create this Pet class. Name your file pet.py. You should follow the guidance below.

 Create some class-wide constants to represent the current activity of the pet, walking, eating, and

sleeping. Remember Python constants should use all upper-case letters with underscores as their

names. For consistency, let's name these constants WALKING with a value of 1, EATING, 2,

Fall 2017 4 Lab 2

and SLEEPING, 3. In addition, define a constant called UNKNOWN to have a value of zero so

we can handle erroneous cases.

 Define a constructor with two parameters, a name and an age. Assign these parameters to proper

class attributes. The activity attribute of the object should be initialized to UNKNOWN.

 Define a string representation of the object using the __str__() method which should print the

name, age, and the activity of the pet.

 For each of the methods, walk(), eat(), and sleep(), all you need to do is to set the current

activity to the appropriate value.

If you implemented your Pet class properly, run the following test program.

'''
A test program for class Pet
Converted from the Java programs developed by Brian King for the Java version
of CSCI 204.
Xiannong Meng
2017-07-26
'''
from pet import *

def test_pet(this_pet):
 print(this_pet)
 pet_name = this_pet.name
 print('Taking ' + pet_name + ' for a walk')
 this_pet.walk()
 print(this_pet)
 print('Feeding ' + pet_name)
 this_pet.eat()
 print(this_pet)
 print('Sending ' + pet_name + ' to bed.')
 this_pet.sleep()
 print(this_pet)
def main():
 my_pets = [Pet('Garfield', 4),
 Pet('Sleepy', 8)]
 for pet in my_pets:
 print('--- begin ---')
 test_pet(pet)
 print('--- end ---')

main()

Figure 3: Test pets program (test_pets.py)

which should generate a result similar to the following.

--- begin ---
Garfield (age: 4) is doing UNKNOWN
Taking Garfield for a walk
Garfield (age: 4) is WALKING
Feeding Garfield

Fall 2017 5 Lab 2

Garfield (age: 4) is EATING
Sending Garfield to bed.
Garfield (age: 4) is SLEEPING
--- end ---
--- begin ---
Sleepy (age: 8) is doing UNKNOWN
Taking Sleepy for a walk
Sleepy (age: 8) is WALKING
Feeding Sleepy
Sleepy (age: 8) is EATING
Sending Sleepy to bed.
Sleepy (age: 8) is SLEEPING
--- end ---

Figure 4: Result of running the program test_pets.py

Please read the test program and the output and make sure you understand what is going on. In particular,

note that the test_pet.py program IMPORTS the Pet class by the line

from pet import *

This line means that we are importing everything from the file named pet.py that was created by your,

just like we'd import any other Python packages.

4.2 Implement the Dog and Cat child-classes

Note that at this point, the objects in the Pet class have the same generic features and behaviors. You are

now to implement child-classes Dog and Cat, which are derived from the parent class Pet.

Follow the example earlier in the lab description about the classes Publication and Book to implement the

child-class Dog and Cat. Here are a few notes.

 Both the Dog and Cat classes need to implement the three methods, eat(), walk() and sleep() as

we can imagine the behavior of these activities by a dog may differ that of a cat. In our

implementation, we will simply call (a.k.a. invoke) the corresponding method from the super

class Pet. The different behavior of a dog and a cat is simply represented by printing a different

message in addition to calling the method in its parent class.

 Neither the Dog nor Cat class in our implementation has any extra attributes besides the name

and the age. So the constructors of these two child-classes will simply call the constructor of its

parent class.

 In our Publication and Book example, both the parent class and the child-class are implemented

in the same file, say, pub.py. So when we use them in an application program

from pub import *
both the parent class and the child-class are available to the application program. In the Pet and

its child-classes, you are asked to implement each class in a separate file, i.e., the Pet class in

pet.py, the Dog class in dog.py, the Cat class in cat.py. This means in your dog.py and

cat.py files, you have to have the line

from pet import *
in order to use the Pet class from the Dog class and the Cat class.

Fall 2017 6 Lab 2

If you implement the Dog and Cat classes properly, run the following program, note the two import

statements,

'''
A test program for classes Cat and Dog.
Converted from the Java programs developed by Brian King for the Java
version
of CSCI 204.
Xiannong Meng
2017-07-26
'''
from dog import *
from cat import *

def test_pet(this_pet):
 print(this_pet)
 pet_name = this_pet.name
 print('Taking ' + pet_name + ' for a walk')
 this_pet.walk()
 print(this_pet)
 print('Feeding ' + pet_name)
 this_pet.eat()
 print(this_pet)
 print('Sending ' + pet_name + ' to bed.')
 this_pet.sleep()
 print(this_pet)

def main():
 my_pets = [Cat('Garfield', 4),
 Dog('Sleepy', 8)]
 for pet in my_pets:
 print('--- begin ---')
 test_pet(pet)
 print('--- end ---')

main()

Figure 5: Test program for the Dog and Cat classes (test_dogs_cats.py)

which should generate a result similar to the following.

--- begin ---
Garfield (age: 4) is doing UNKNOWN
Taking Garfield for a walk
Walk? Dude, seriously?
Garfield (age: 4) is WALKING
Feeding Garfield
Lasagna, please.
Garfield (age: 4) is EATING
Sending Garfield to bed.
Yes. I need 23 hours of this each day!

Fall 2017 7 Lab 2

Garfield (age: 4) is SLEEPING
--- end ---
--- begin ---
Sleepy (age: 8) is doing UNKNOWN
Taking Sleepy for a walk
Walk?!?! Oh boy oh boy!!! Pant! Pant! Pant!
Sleepy (age: 8) is WALKING
Feeding Sleepy
Begging for food... kibbles and bits please.
Sleepy (age: 8) is EATING
Sending Sleepy to bed.
Zzzzzz (drooling)...
Sleepy (age: 8) is SLEEPING
--- end ---

Figure 6: Result of executing test_dogs_cats.py

Can you notice the differences between the program test_dogs_cats.py and test_pets.py? If you

read carefully both programs, the differences are really very minimal, in test_pets.py the objects are

defined as Pet, in test_dogs_cats.py the objects are defined as Dog or Cat, a child-class of Pet. The

output of the test programs are very different because the behavior of a Cat is very different from that of a

Dog. As a side note, Linux has a very useful command that can compare and tell the difference between

two files. Try the following.

diff test_dogs_cats.py test_pets.py

Observe the output. Convince yourself that you understand that is going on in using the diff command.

Make sure your programs pet.py, cat.py, and dog.py work properly, and save them before

proceeding.

5. Exceptions

Another feature we will learn in this lab is Exception. We often encounter situations in which we know

there are errors in data or user input. Python, like many other modern programming languages, allow the

programmers to design programs to anticipate and handle these error conditions. The key mechanism of

handling errors is the Python try-except structure. The idea is that you’d try some actions, if

something is wrong, the errors should be caught by the except statement.

Python has a collection of pre-defined exceptions that the programmers can use. The following example

illustrate the concept [ref:https://en.wikibooks.org/wiki/Python_Programming/Exceptions]

import random

class CustomValueError(ValueError):
 def __init__(self, message = 'Custom value error'):
 super().__init__(message)
 print('Exception : ' + message)

try:
 ri = random.randint(0, 3)

Fall 2017 8 Lab 2

 print('randome value : ' + str(ri))
 if ri == 0:
 infinity = 1/0
 raise ZeroDivisionError
 elif ri == 1:
 raise ValueError("Message")
 elif ri == 2:
 raise ValueError # Without message
 elif ri == 3:
 raise CustomValueError
except ZeroDivisionError:
 print('Divided by zero')
except ValueError as valerr:
 print("Value error: " + str(valerr))
except CustomValueError:
 print('Custom value error')
except: # Any other exception
 print('Unknow error')
finally: # Optional
 pass # Clean up

Figure 7: The test_exception.py program that illustrate the concept of try-except clause

Copy and save this program as test_exception.py, then run the program multiple times, trying to

observe the cases where all five different values are generated. The program generates a random number

between 0 and 4, inclusive. For each value, the program invokes some form of exception. The number

generation and the invoking exceptions are contained in a try-except clause. If something is worthy to

cause exceptions (values 0 through 3), an exception is raised and caught in the proper except clause

when the programming statements in the except will be executed.

In this example, two exceptions, ZeroDivisionError and ValueError are defined by Python. One

exception, the CustomValueError class is defined by the programmer. Note the class definition of

CustomValueError is very similar to any inherited class. It calls constructor of its parent class

(ValueError) first, before adding any of its own action. The ValueError exception class actually is a

child-class of a more general class Exception. See this document

(https://docs.python.org/3/library/exceptions.html) for a complete description and hierarchy of Python

exceptions.

In the rest of the lab, you are asked to implement a Counter class hierarchy using inheritance along with

appropriate exception handling.

5.1 Implementing the Counter class hierarchy

Now that you have some experiences working with class design and implementation, we will give you

some text description of what the classes should do, you will then design and implement the classes

accordingly. So please read the description carefully and think about how you would proceed.

The Counter class hierarchy can be illustrated in the following diagram.

https://docs.python.org/3/library/exceptions.html

Fall 2017 9 Lab 2

Figure 8: The Counter class hierarchy

The top-most class is the BasicCounter which contains two attributes, counted and the_initial_count

along with five methods, count(), un_count(), reset(), set_count_to(), and

get_count_value(). The meaning of the attributes and the behavior of the methods are as follows.

 The attribute counted keeps the current value of the counter which could be any integer, positive,

negative, or zero;

 The attribute the_initial_count stores the initial value of the counter which can be used to reset

the counter when needed;

 The count() and un_count() methods increment or decrement the counter value by one,

respectively;

 The reset() method resets the counter value to the_initial_count;

 The set_count_to() and get_count_value() methods set and retrieve the counter value,

respectively.

The LimitedCounter class inherits all features from the BasicCounter class. In addition, it has two class-

wide constants, LIMIT_MIN and LIMIT_MAX which specify the upper and lower limit of the counter

value. The idea is that this counter contains limits for the counter value. Accordingly, the LimitedCounter

class has four method related to the limits, is_at_min() and is_at_max() which checks to see if the

counter value is at its limits, as well as get_min() and get_max() which returns the limit value. Note

that we are not allowed to change the limits once initialized. Also note that the LimitedCounter object

does not take any actions if the value reaches limits. In another words, if the counter reaches its limits, for

example, LIMIT_MAX and the counter value is incremented one more time, the operation will succeed.

The counters at next level, the StoppingCounter, the RollOverCounter, and the WarningCounter are all

derived from LimitedCounter. The StoppingCounter will stop incrementing or decrementing the counter

value once reaching the limits; the RollOverCounter will “roll over” the counter value after reaching the

limits; the WarningCounter will raise exception and stop counting if the counter value reaches its limits.

Your task now is to implement the first four counters first, BasicCounter, LimitedCounter,

StoppingCounter, and RollOverCounter. Unlike the first part of the lab where the parent class and child-

classes are stored in separate files, we ask you to implement these counters in one file called

counter.py. You will be asked to implement the WarningCounter a bit later.

Make sure you test often as you progress. Here is a sample program to test the RollOverCounter class.

Fall 2017 10 Lab 2

from counter import *

print('Testing RollOverCounter...')
my_count = RollOverCounter(10, 12)

print('Its min value should be 10 ... It is ' + str(my_count.get_min()))
print('The count value should be at minimum ... ' +
str(my_count.is_at_min()))
print('The count value should not be at maximum ... ' +
str(my_count.is_at_max()))

my_count.count()
my_count.count()
print('Increment twice, the count value should be 12 now ... ' +
str(my_count.get_count_value()))

print('The count value should be at maximum ... ' +
str(my_count.is_at_max()))
print('The count value should not be at minimum ... ' +
str(my_count.is_at_min()))

my_count.count()
print('Increment one more time, the count value should rollover to 10 ... ' +
str(my_count.get_count_value()))

my_count.un_count()
print('Decrement three times, the cout value should rollover to 12 ... ' +
str(my_count.get_count_value()))

Figure 9: A sample test program for RollOverCounter (test_rollover_counter.py)

5.2 Design and implement CounterException and WarningCounter class

Following the description and the example at the beginning of Section 4 for Python exceptions, you are to

implement a CounterException class and use it in the WarningCounter class. The idea is that if the

counter value in a WarningCounter object has reached its limit (upper limit or lower limit), the counter

value will not change, but raise a CounterException. The CounterException constructor will call the

constructor of its parent class Exception first, then print its own error message. Note that in the random

number example in Figure 7, the parent class of the CustomValueError is ValueError, you could use the

ValueError as the parent class of CounterException, but you can also use Exception directly.

Implement both the WarningCounter and CounterException in the file counter.py.

After implementing the WarningCounter and CounterException, try the following program.

Fall 2017 11 Lab 2

from counter import *

def readLimit(prompt):

 v = 0
 while True:
 try:
 v = int(input(prompt))
 if v < LimitedCounter.DEFAULT_MIN:
 raise ValueTooSmallError
 elif v > LimitedCounter.DEFAULT_MAX:
 raise ValueTooLargeError
 break
 except ValueError:
 print('Number error, try again!')
 except ValueTooSmallError:
 print("This value is too small, try again!")
 print()
 except ValueTooLargeError:
 print("This value is too large, try again!")
 print()
 return v

print('Testing WarningCounter...')
my_count = WarningCounter(10, 12)

print('Its min value should be 10 ... It is ' + str(my_count.get_min()))
print('The count value should be at minimum ... ' +
str(my_count.is_at_min()))
print('The count value should not be at maximum ... ' +
str(my_count.is_at_max()))

my_count.count()
my_count.count()
print('Increment twice, the count value should be 12 now ... ' +
str(my_count.get_count_value()))

print('The count value should be at maximum ... ' +
str(my_count.is_at_max()))
print('The count value should not be at minimum ... ' +
str(my_count.is_at_min()))

'''
print('Increment one more time, result in exception ... ')
my_count.count()
'''

my_count.un_count()
my_count.un_count()

Fall 2017 12 Lab 2

print('The count value should be at minimum ... ' +
str(my_count.is_at_min()))
print('The count value should not be at maximum ... ' +
str(my_count.is_at_max()))

'''
print('Decrement one more time, result in exception ... ')
my_count.un_count()
'''

lo = LimitedCounter.DEFAULT_MIN
hi = LimitedCounter.DEFAULT_MAX
while True:
 try:
 lo = readLimit('Enter minimum: ')
 hi = readLimit('Enter maximum: ')
 if lo >= hi:
 raise ValueIncorrectError
 break
 except ValueIncorrectError:
 print('The values of ' + str(lo) + ' and ' + str(hi) + ' are wrong.')

print('lo ' + str(lo) + ' hi ' + str(hi))

Figure 10: Program to test WarningCounter (test_warning_counter.py)

6. Prepare for submission

Review your programs and make sure your programs follow proper conventions including naming and

comments. Remove extra printing statements you may have put in place during the development of the

program. Format the programs properly.

Make sure at the top of the each program you include a global comment section following the sample

below that indicate the lab assignment, your name, your lab section, and your professor’s name.

“““CSCI 204 Lab 02 Class Design, Implementation, and Exceptions
Lab section: CSCI 204.L61, Tuesday 10-11:50
Student name: Sam Snoopy
Instructor name: Professor Garfield”””

7. Submission

Submit the following files individually to the course Moodle site. Yes, please submit the files we give you

as well to make grading a bit easier.

cat.py, dog.py, pet.py, test_dogs_cats.py, test_pets.py,

counter.py, test_rollover_counter.py, test_warning_counter.py,
test_limited_counter.py, test_stop_counter.py.

