
Fall 2017 1

CSCI 204 – Introduction to Computer Science II

Lab 4: Matrix ADT and its Applications

1. Objectives

In this lab, you will learn the following:
 Matrix abstract data type (ADT) and its operations,

 Reviewing concepts of streams (files) and operator overloading,

 Reading files and storing the information into a piece of given data structure, and

 Some matrix applications in social networks.

2. Commercial Applications and the Matrix ADT

Websites like Pandora and Netflix use your likes and dislikes of music and movies and the likes and

dislikes of other users to suggest further music and movies that you might like. A simple way to find

people with similar taste to yours is to use matrices. You will be implementing a class for such a matrix

today.

As you have seen in class, data types such as Python string and Python list may be built “on top” of other

data types (like arrays). We've provided a class for 2-D Arrays which is built on top of the Python list.

You will use this 2-D Array to build a Matrix class.

A matrix is a 2-dimensional array with a set of special operations defined for the 2-D array. Matrix retains

the basic features of an array such that the elements in the matrix can be accessed by a pair of indices. For

example, if m is a matrix of integers of the size 4 by 4, then we can do operations such as m[2,3] = 10

and print(m[0,1]), which are very similar (or identical) to a 2-D array. However because matrix has

many special properties, we should also be able to apply operations such as matrix addition, subtraction,

multiplication, transposition, and possibly other operations. All these operations are beyond a traditional

array.

For example, in the case of Netflix, we can represent the relationship between the top n movies and a

group of m students who liked these movies as a matrix. Because of the space limitation on the paper,

let’s set values for m and n to be 4 and 3. (The number three and four are chosen arbitrarily, they can be

any number.)

According to IMDb (2017, Internet Movie Database, http://www.imdb.com/), the top 3 movies of all

times are
1. The Shawshank Redemption (1994)
2. The Godfather (1972)
3. The Godfather: Part II (1974)

We assume the four students are named, Alice, Bastian, Catlin, and Diego.

Here is a summary of the information where a 1 means the student likes the movie and a 0 means he/she

doesn’t.

http://www.imdb.com/

Fall 2017 2

 The Shawshank Redemption The Godfather The Godfather: Part II

Alice 1 1 0
Bastian 0 0 1
Catlin 0 0 1
Diego 1 1 1

We want to use a matrix to represent this information and use this matrix to compute the common movies

the students have seen. Of course, for a small sample like this, no computation is really needed, one can

find an answer by just manually examining the values. But imagine hundreds of movies and millions of

viewers, some computation is then needed to come up anything meaningful. The matrix M for four

students and three movies could look as follows. (The same matrix as above: columns are movies, rows

are students.)

M =

1 1 0
0 0 1
0 0 1
1 1 1

By convention, column and row counting starts from the top left corner and are indexed by [row, column]

so matrix[0,0] == 3 and matrix[1,2] == 5 in the matrix below.

3

 5

In the example matrix M, each row represents the movie a student liked. In order to compute the common

movies these students liked, we need to transpose this matrix and get M'. To do this, M'[row, col] =

M[col, row] and the rows of M become columns of M' and vice versa.

M =
students (4 rows) by movies (3 cols)

1 1 0

0 0 1

0 0 1

1 1 1

Transposed as Mt =
movies (3 rows) by students (4 cols)

1 0 0 1

1 0 0 1

0 1 1 1

For example, the top left index of Mt is row 0, col 0
Mt[0,0] = M[0,0] = 1 as seen in bold above
Mt[0,1] = M[1,0] = 0 as seen in bold above

If we multiply the two matrices M and M t we get the common movies each pair of students liked.

In order to multiply matrices, R = M * Mt, the matrix dimensions effect the results and are used in the

computation.

Fall 2017 3

 M * Mt = R
n rows by k cols k rows by p cols n rows by p cols

so the number of columns (k) of the 1st matrix must be the same as the number of rows (k) of the 2nd

matrix. The common size, k, will be used in the multiplication. The resulting matrix will have the number

of rows (n) of the 1st matrix and the number of columns (p) of the 2nd matrix.

As a result of this particular multiplication, we would have

M
students (4 rows) by

movies (3 cols)
1 1 0

0 0 1

0 0 1

1 1 1

* Mt
movies (3 rows) by

students (4 cols)

1 0 0 1

1 0 0 1

0 1 1 1

= R
students (4 rows) by students (4 cols)

2 0 0 2

0 1 1 1

0 1 1 1

2 1 1 3

where each element in R is computed as follows.

R[row,col] = Sum for all values of k of M[row,k] * Mt[k,col])

For example, the bottom right index of R is row 3, column 3 (in bold above)

R[3,3] = Sum for k is 0..2 of M[3,k] * Mt[k,3])
 = (M[3,0]*Mt[0,3]) + (M[3,1]*Mt[1,3]) + (M[3,2]*Mt[2,3])
 = (1*1) + (1*1) + (1*1)
 = 3

M *

1 1 1

Mt =

 1

 1

 1

R

 3

Another example, the bottom left index of R is row 3, column 0 (in bold above)

Fall 2017 4

R[3,0] = Sum for k is 0..2 of M[3,k] * Mt[k,0])
 = (M[3,0]*M'[0,0]) + (M[3,1]*Mt[1,0]) + (M[3,2]*Mt[2,0])
 = (1*1) + (1*1) + (1*0)
 = 2

M *

1 1 1

Mt =

1

1

0

R

2

The rows and columns of the students vs movies matrix after the multiplication (i.e., elements in R) now

represent the common movies each pair of students liked.

 Alice Bastian Catlin Diego

Alice 2 0 0 2

Bastian 0 1 1 1

Catlin 0 1 1 1

Diego 2 1 1 3

For example, the above matrix R represents the following facts: out of a total of three movies, Alice and

Diego liked two common ones; Bastian and Catlin liked one common movie; and Catlin liked no

common movies with Alice.

3. Getting started

Begin by copying lab files from the course Linux directory and examining them. When re-visiting this

lab, you might also want to review the content about 2D array.

 array204.py contains completed classes Array and Array2D

 matrix204.py contains a partially implemented Matrix class

 testarrays.py contains codes that test the arrays and the matrix

 moviegoers.py contains a partially implemented class

 input-data.txt contains the information needed for testing the MovieGoers class

 test.txt contains the information needed for testing the MovieGoers class

Classes Array and Array2D are implemented in the file array204.py. The array204.py file

also contains implementation of auxiliary _ArrayIterator class. The object of _ArrayIterator

helps to move along the array (iterate over array). See how this class is implemented. In a future lecture

session we’ll have a more in-depth discussion of how iterators work.

Fall 2017 5

4. Your work

In this lab, you are given a partially completed matrix class called Matrix in the file

matrix204.py. This class contains defined data members, and some completed methods such as the

constructor, access methods that return the number of rows and number of columns in the matrix, the

method of add(), and overloaded operators which allow usage of [row, col] to access the matrix. Look

at testarray.py to see how to create and access a Matrix object. Note that we’ve learned how

operator overloading works in CSCI 203. This may be a good time to take a quick review.

You are to complete the following tasks.

a. Complete the method __str__() which generates and returns a string representation of the

matrix object.

The method __str__ () generates and returns a string representation of the matrix object. If a is

an matrix, __str__() makes a call to a print method such as print(a) prints the matrix in

proper form;

b. Complete the method transpose() which returns a NEW transposed matrix. Do not modify

the original!

If a is a matrix, and b is the transposition of a, then for all elements in b, b[i,j] = a[j,i].

c. Complete the __mul__() method that overloads the “*” operator. Again, this returns a new

matrix.

If a, b, and r are three matrices, r = a * b means that for all elements in r, r[i, j] = sum over all k

(a[i, k] * b[k, j]);

d. Complete the __sub__()method that overloads the “-” operator. The method returns a new

matrix.

If a, b, and r are three matrices, r = a – b means that for all elements in r, r[i, j] = a[i, j] – b[i, j],

where a[i, j] and b[i, j] are elements in matrices a and b, respectively.

5. Test your work

Once you complete the four Matrix methods, you should be able to run the program testarrays.py

which should generate the following result. (Only the matrix relevant parts are shown in the output file

below.)

matrix element [1,2]: 0 (should be 0)
scaled matrix element [1,2]: 8 (should be 8)

original matrix:
0 1 2
1 2 11

Fall 2017 6

transposed matrix:
0 1
1 2
2 11

matrix e = c X d :
5 24
24 126

matrix f = e + e :
10 48
48 252

matrix g = f - e :
5 24
24 126

If your program generates the above result, your implementation of the missing matrix methods are likely

correct.

6. Completing the MovieGoers class in moviegoers.py

When Matrix class is completed, you then need to work on another partially completed class called

MovieGoers in the file moviegoers.py to compute the common movies that a group of students have liked.

The given MovieGoers class already contains all necessary data members (thus a part of the constructor).

Some of the data members are arrays and others are matrices. Students need to complete the constructor,

and three additional methods, two of which are used in the constructor and one is used to find the

common movies among students.

Examine the file moviegoers.py, you will find an incomplete class MovieGoers and a main()

method that test the MovieGoers class within the implementation file moviegoers.py. In the

implementation file, you will find that the data members of the class MovieGoers have all been defined

for you. You need to add a few lines of code in the constructor to read the information from a text file,

interpret these lines of text properly, and store the information into the matrix. You are asked to complete

the two methods that will be called from the constructor to build the matrix. Here are a few tasks you

need to complete.

1. Open a text file by a given name and read all the lines in the file into the data member self.data

2. Parse the lines in the first part of the input data, which consists of an integer n and the names of a

total of n top movies, followed by an integer m and a list of m student names. The split()

method may be helpful here. The values of n and m can be any positive integers. You should look

at the input file input-data.txt at this point to understand the structure of the first part of the input

file. You need to implement the method self._read_data() which reads the list of movies

into the 1-D array self.movies and the list of names into the 1-D array self.people. Note that the

two integers n and m give you the size needed for creating the two arrays.

3. Create the relation matrix self.matrix which stores the relation between the students and the

movies they have watched. The dimension of the matrix is determined by the size of the people

array (row) and the size of the movie array (column).

Fall 2017 7

4. Read the rest of the data that correspond to the matrix into the matrix just created using the

method self._read_matrix().

When you finish these four tasks properly, you should be able to run the program moviegoers.py without

errors, except that no results will be displayed since you haven’t completed the method

self.find_common(), which is our last task of the lab.

The method find_common()will compute the common movies seen by the group of students and

display the result of calculation. The computation in this method is straightforward now that your

program has read the information properly. You need first to create a matrix that is the transposition of

the original self.matrix using the matrix transpose() method. You then multiply the two

matrices together to get the result. Use a print method to print the resultant matrix. When you run the

program using the following command,

python moviegoers.py input-data.txt

You should see the result similar to the following.

matrix read as :
0 1 0 0 1 1 0 0 0 1
1 0 1 0 1 0 0 0 0 0
1 1 0 0 1 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1
1 0 1 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 1 1

here is the interest measuring matrix
4 1 4 2 1 3
1 3 2 0 2 2
4 2 5 2 2 4
2 0 2 2 1 2
1 2 2 1 3 2
3 2 4 2 2 5

The first part of the output shows the movie watching matrix (given in the input file). Each line in this

matrix shows the movies liked by a student. For example, Alice (first row) liked the 2nd, 5th, 6th, and 10th

movies while Fred (sixth row) liked the 1st, 5th, 6th, 9th, and 10th movies. The second part of the output

shows the interest measure matrix. Recall that this is the result of matrix multiplication. So the

interpretation of the matrix should be something like, Bastian (2nd row) liked two of the same movies as

Catlin (3rd column), Eva (5th column), and Fred (6th column), while he doesn’t have any movies in

common with Diego (4th column).

If your program produces the above result (the exact text could be different), your program is likely

working correctly. Copy and paste the result into a text file called outputa.txt. Now please try your

program with a different input data

python moviegoers.py test.txt

Fall 2017 8

Copy and paste the result of this execution into a file called outputb.txt and make this a part of the

submission file.

7. Submitting your work

Congratulations! You’ve completed this lab. Please make sure that your files are well-commented.

Submit your program (all four Python files, including the ones given) and the two output data files to

Moodle.

