
CSCI 204 – Introduction to Computer Science II

Lab 6: Stack ADT

1. Objectives
In this lab, you will practice the following:

 Learn about the Stack ADT

 Implement the Stack ADT using an array

 Use a Stack to convert expressions from infix form to postfix form

 Use a Stack to compute the answer to postfix expressions

 Review and use Python exceptions

2. Getting started
Make a directory for this lab lab06 under your csci204 directory and copy all files from the

course Linux directory ~csci204/2017-fall/student/labs/lab06/. You should get

these two files.

infix2postfix.py stack.py

3. A simple calculator using stacks
Stacks have many uses. In the earlier calculators, they were using stacks to process numbers and

math operators. You are accustomed to seeing math expressions such as 3 + 4 in infix format

where the operator (+) is in between the operands (3 and 4). This format is easy for the human

user: for example, if you see an expression 3 + 4 * 5, you know that first 4 should be

multiplied by 5, and then 3 should be added to the result. It is harder for a computer that reads

input from left to right to follow the same steps. It first reads 3, then reads “+” sign. When it

encounters 4, it does not know whether any operation of higher precedence is coming, so it may

attempt to add 3 and 4 right away. The solution is to use a special format called postfix notation

where the operator comes after the operands so 3 + 4 becomes 3 4 +. The calculator

software can then scan the input from left to right and figure out the proper order of operations to

produce a final result.

In this lab, you will implement a Stack ADT as an array. You will test your stack on the

provided infix to postfix program. Then you will extend the program so that it will handle

expressions with parentheses. Then you will extend the program to compute answers for

arithmetic expressions.

4. Arrays and Python
The built-in Python list is built using an array. It provides a lot of list functionality not present

in the basic array. We will be using just the basic array (as you did with a few previous labs).

This is very similar to what you did in the list lab. Note that because we are using an array, you’ll

need to keep track of both size (how many items are in the Stack) and capacity (the

maximum number of elements that you use to store Stack items).

 2

Refer to the given program stack.py to find out the methods you need to implement. Test the

work of your stack operations before moving on to the next part. In order to test this, write a

collection of tests in a file named teststack.py that performs various tests. The main()

method should push and pop a number of items and test is_empty() and top() between

each push and pop. Have the main() method print an error message when any test comes back

with unexpected results. Here is an example to get you started.

x = MyStack()

if not x.is_empty():

 print(“Starting stack should have been empty but isn't”)

x.push('q')

y = x.top()

 if not y == 'q':

 print(“Top of stack should be q but was”, x.top())

 if not y == x.pop():

 print(“The pop() method has problem(s)”)

5. Stack
Your first task is to complete the Stack ADT.

Task 1: Complete the Stack ADT in stack.py so that your stack is implemented using an

array.

1. Write a constructor to create an empty stack with initial capacity of 2 and size of 0. The

elements in the array should be initialized as None.

2. Write a __expand__() method which doubles the capacity of the array when full.

3. Write a push() method that add an item to the top of the stack.

4. Write a pop() method that removes the item at the top and returns it.

5. Write a top() method to return the item at the top without removing it.

6. Write an is_empty() method that returns True if the stack is empty, False

otherwise.

6. Operator precedence and associativity
To understand the conversion from infix to postfix, you first need to understand operator

precedence and associativity.

Is 3 + 4 * 5 equal to 35 or 23?

Did the order of the operators dictate your answer or did which operators they were dictate your

answer? Hopefully, you agree that which operators were more important than what order they

appear in the expression. Precedence tells us which operator is more important and gets

computed first. In 3 + 4 * 5, the * has higher precedence than + so 4*5 = 20 gets computed and

then 3 + 20 = 23 gets computed. Similarly, 3 * 4 + 5 means 3 * 4 = 12 gets computed and then 12

+ 5 = 17 gets computed.

Is 5 - 4 -3 equal to -2 or 4?

The operators are the same here (and have the same precedence) so did you do the left operator

first or the right operator first? (that is, 4-3 first or 5-4 first?) Associativity tells us which

 3

operator is more important when both operators have the same precedence. In 5 – 4 - 3, both

operators have the same precedence so we compute the answer for the left operator first (left

associativity). The expression 5 - 4 – 3 means 5 – 4 = 1 and then 1 - 3 = -2.

All of the standard math operators (+, -, *, /) use left associativity. * and / have equal precedence

to each other and have higher precedence than + and – (which have equal precedence to each

other). The precedence and associativity of the operators will need to be preserved when we

translate infix to postfix.

Task 2: Which operator has the greatest precedence in each of the following expressions?

(Answer with the name of the operator or “same” if they all have the same precedence.) Save

your answers in a file named lab.txt.

1. 3 + 4 + 5

2. 3 – 2 - 7

3. 8 * 4 – 2

4. 4 – 2 / 5

5. 5 / 3 * 9

6. 6 * 2 + 1

7. 7 + 3 – 2

8. 3 + 8 * 5

9. 6 + 2 * 5 - 8

7. Algorithm to convert prefix to postfix
Here is an algorithm to convert an infix expression to a postfix one.

Initialize an output string to be empty

Empty the stack in use

For each token in the input string # the token can be a number or an operator

 If it’s a number, add it to the output string

 Otherwise # it must be an operator

 While (the top of the stack is an operator with greater

 or equal precedence to this operator)

 Pop the stack

 Add the popped operator to the output string

 Push this token on the Stack.

While there are things on the stack

 Pop the stack

 Add the popped item to the output

Example: 3 * 4 + 2

Input Stack afterwards Output afterwards

3 top → None 3

* top → * 3

4 top → * 3 4

+ top → + 3 4 *

2 top → + 3 4 * 2

 top → None 3 4 * 2 +

 4

Example: 3 + 4 * 2

Input Stack afterwards Output afterwards

3 top → None 3

+ top → + 3

4 top → + 3 4

* top → * + 3 4

2 top → * + 3 4 2

 top → None 3 4 2 * +

*To check if an item is a certain type you might want to look up the isinstance() or

type() functions. You can also consider using the isnumeric() method.

Task 3: What postfix expression is equivalent to the given infix expression? Save your answers

in lab.txt.

a) 3 + 4

b) 3 – 2 - 7

c) 8 * 4 – 2

d) 4 – 2 / 5

e) 5 / 3 * 9

f) 6 * 2 + 1

g) 7 + 3 – 2

h) 3 + 8 * 5

i) 6 + 2 * 5 - 8

The file infix2postfix.py contains a complete program for converting an expression from

infix to postfix notation. The input accepts any single digit 0...9 as values and the operators +, -,

*, and / with no spaces between them. (You will be asked to revise the program to allow the

expression to contain any number of white space characters and numbers of more digits.) Try to

run the program infix2postfix.py on all the expressions you just manually translated into

postfix to see what the program does.

8. Allow parentheses in the expressions

Your next task is to change the program so that it will handle input strings with parentheses.

Parentheses have the highest precedence and trump all of the math operators. Due to the layout

of postfix format, parentheses are never necessary in postfix.

9. Algorithm to convert prefix with optional parentheses to postfix

Here is an algorithm that can take care of the expressions with optional parentheses. The

underlined portions are added to the original algorithm in Section 7 to handle parentheses.

 5

For each number and operator in the input

 If it’s a number, add it to the output

Else if it’s a left parenthesis, push it onto the stack.

Else if it’s a right parenthesis

 While the stack is not empty and the top of the stack is not a left parenthesis

 Pop the stack

 Add the popped operator to the output

 If the top of the stack was a left parenthesis, pop it

 Else there is a mismatched right parenthesis so throw an exception

Otherwise # it must be an operator

 While (the top of the stack is not a left parenthesis

 and the top of the stack is an operator with greater

 or equal precedence to this operator)

 Pop the stack

 Add the popped operator to the output

 Push this operator on the Stack.

While there are things on the stack

 Pop the stack

 If the popped item is an operator, add it to the output

 Else there is a mismatched left parenthesis so throw an exception

Example: 3 * (4 + 2)

Input Stack afterwards Output afterwards

3 top → None 3

* top → * 3

(top → (* 3

4 top → (* 3 4

+ top → + (* 3 4

2 top → + (* 3 4 2

) top → * 3 4 2 +

 top → None 3 4 2 + *

Task 4: What postfix expression is equivalent to the given infix expression? Save your answers

in lab.txt.

a) (3)

b) (3 + 4)

c) 3 – (2 - 7)

d) 8 * (4 – 2)

e) 4 – (2 / 5)

f) (5 / 3) * 9

g) (6 * 2 + 1)

h) 7 + (6 - 3) / 2

i) 7 * (6 – 3) / 2

j) (3 + 8) * 5

k) 6 * (2 + 5) – 8

l) (4 + 2) * 7 / 3

m) (6 + 2) * (9 + 1)

 6

Task 5: Revise the code in infix2postfix.py so that it can translate expressions with

parentheses from infix to postfix.

The program examines each character in the expression. If the character is a variable it does one

thing, and if the character is an operator, it does something else. You will need to add other

possibilities for the characters the program sees. You will add processing for a left parenthesis

and processing for a right parenthesis.

Handle a left parenthesis

Put this code in its own method. If the character being processed is a left parenthesis, just push it

onto the stack. Note that the stack may now contain left parentheses in addition to operators. You

will need to make other changes later on because of this.

Handle a right parenthesis

Put this code in its own method. When your program sees a right parenthesis, pop operators off

the stack and add them to the output until you reach the matching left parenthesis. When you

reach the left parenthesis, remove it from the stack too (don’t output it). If the stack goes empty

while you are looking for the left parenthesis, it means the left parenthesis is missing and you

should raise a ParensMismatchException.

Handle operators

The processing for an operator will be similar to what was done before. Previously, the program

would pop and print operators until the stack became empty or the top of the stack has an

operator of higher or equal precedence than the current operator. Now there is an additional

condition that will stop this loop, the loop must also end if a left parenthesis is found on top of

the stack. Don't remove that left parenthesis.

Emptying the stack

At the end of the translate() method, the program removes any remaining operators from

the stack and add them to the output string. If there were too few right parentheses in the

expression, there will be an unmatched left parenthesis on the stack now. If you see one, you

should raise a ParensMismatchException.

Parentheses mismatch and illegal expression exceptions

If a parentheses mismatch happens during translation, the program raises a

ParensMismatchException.

If a bad character (not a number, operator, or parenthesis) is seen, the program raises an

IllegalExpressionException. Write the ParensMismatchException class so that

it inherits from Exception. Then catch the two kinds of exceptions in the main() method

and print an error message for each one.

Check your results

Make sure all of the following examples work. Run your program with each of the expressions

from Task 4 as well as the following expressions.

 7

Helpful notes: you don’t have to type these expressions over and over again to feed them to the

program. Instead, you can save these expressions in a text file, e.g., input.txt, and redirect the

input to the program from a terminal window by
python infix2postfix.py < input.txt

Infix

(input)

Postfix

(output)

(((3))) 3

((3) error

(3)) error

10. Algorithm to compute the answer to a postfix expression

Here is an algorithm that computes the value of a postfix expression.

For each number and operator in the input

If it’s a number, push it onto the stack

Otherwise # it must be an operator

 Pop the stack and store the number as the right operand

 Pop the stack again and store the number as the left operand

 Compute the value of “left operator right”

 Push the result onto the stack

 Pop the stack and return the result

Example: 3 5 1 - *

Input Stack afterwards

3 top → 3

5 top → 5 3

1 top → 1 5 3

- top → 4 3

* head → 12

So far the translate() method in infix2postfix.py can only process expressions of

limited format, i.e., expressions with single digit as value and no space in between values and

operators. This restriction makes writing of the program a bit easier, but really limits the

functionality of the program. To relax this limitation a little bit, we will allow any valid

numerical values (e.g., values with multiple digits) in our input. For example, 123 + 34 or (345

+ 567) * 4 / 2. However we still impose the limit such that the numbers and operators are

separated by at least one white space. (Think about how to process the expression if no white

space is required. It is definitely doable, but a bit more complicated.)

Task 6: Revise the method translate() such that the program is able to handle expressions

with values that are more than one digit. Note that in this case, we require each token in the input

be separated by at least one white space.

Try your revised program with the following input.

 8

3 + 4 * 5

(3 + 4) * 5 + 6

(123 - 456) * 3

456 - 100 / (4 + 6)

Helpful note: How do you know what is the correct result for each of these expressions? You’d

say “Use a calculator, of course!” You are correct. You can use the calculator that comes with any

of the operating systems such as Windows or Linux, or you can use the one on your smartphone,

or any one over the internet. However you can also use the Linux utility program called bc for

basic calculation. Use the example shown in the following screen capture as a guidance, you can

compute any value of any expressions. (The bc program doesn’t need the white spaces in

between tokens.) Use Control-d to quit the bc program.

[host]$ bc

bc 1.06.95

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software

Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type `warranty'.

3+4*5

23

456-100/(4+6)

446

^d

Task 7: Write a function in infix2postfix.py which computes the answer to a postfix

expression. Name this function evaluateExpression() which takes a postfix expression

as the parameter and returns the computed value of the expression.

Task 8: Create a file named testinfix2postfix.py that contains a main() function.

Call your evaluateExpression() function from the main() function with the

expressions listed in Task 6 and print the answers. Make sure you test all the expressions in this

handout. Save the result in lab.txt.

11. Submission
Remove all unnecessary files and make a zip file from the lab05 directory. Submit this zip file

to Moodle. Make sure you include everything such that we can run your program directly

without other files.

