
8/22/2017

1

Intro to Computer Science II

2D Arrays, Lists, and

User Modules

1 2

Arrays And Lists

 An array has to be created and initialized before it

can be used.

 elements are like any other variable.

 we must keep track of the size of the array.

slots = [None for i in range(5)]

for i in range(len(slots)):

 print(slots[i])

3

List: Construction

 The Python list interface provides an abstraction to

the actual underlying implementation.

py_list = [4, 12, 2, 34, 17]

4

2-D Arrays

 Arrays of 2 or more dimensions are not supported at

the hardware level.

 Most languages provide some mechanism for

creating and managing multi-dimensional arrays.

 2-D arrays are very common data structure in

computer science.

5

2-D Array ADT

 A 2-D array consists of a collection of elements

organized into rows and columns.

 Elements are referenced by row and column

index (start at 0).

 Once created, array size can not be changed.

 Array2D(nrows, ncols)

 num_rows()

 num_cols()

 clear(value)

 getitem(i1, i2)

 setitem(i1, i2, value)

6

2-D Array Example

 Suppose we have a text file containing exam grades

for multiple students.

 Extract the grades from the file.

 Store them in a 2-D array.

 Compute the average exam grades.

 Example: n (7) students with m (3) grades each

7

3

90 96 92

85 91 89

82 73 84

69 82 86

95 88 91

78 64 84

92 85 89

8/22/2017

2

7

2-D Array Example

from array import Array2D

 # Open the text file for reading.

grade_file = open(filename, "r")

 # Extract the first two values; indicate the size of the array.

num_exams = int(grade_file.readline())

num_students = int(gradeFile.readline())

 # Create the 2-D array to store the grades.

exam_grades = Array2D(num_students, num_exams)

 # Extract the grades from the remaining lines.

i = 0

for student in grade_file :

 grades = student.split()

 for j in range(num_exams):

 exam_grades[i,j] = int(grades[j])

 i += 1

 # Close the text file.

grade_file.close()

avggrades.py

8

2-D Array Example

 The contents of the 2-D array produced by the

previous code segment.

7

3

90 96 92

85 91 89

82 73 84

69 82 86

95 88 91

78 64 84

92 85 89

9

2-D Array Example

 # Compute each student's average exam grade.

for i in range(num_students) :

 total = 0

 for j in range(num_exams) :

 total += exam_grades[i,j]

 exam_avg = total / num_exams

 print("%2d: %6.2f" % (i+1, exam_avg))

avggrades.py

10

Implementing the 2-D Array

 There are various approaches that can be used to

implement a 2-D array.

 Use a single 1-D array with the elements

arranged by row or column.

 Use a 1-D array of 1-D arrays.

 Use lists

11

Array of Arrays Implementation

 Each row is stored within its own 1-D array.

 A 1-D array is used to store references to each row

array.

12

2-D Array Implementation

class Array2D :

 def __init__(self, n_rows, n_cols):

 self._the_rows = Array(numRows)

 for i in range(n_rows) :

 self._the_rows[i] = Array(n_cols)

 def num_rows(self):

 return len(self._the_rows)

 def num_cols(self):

 return len(self._the_rows[0])

 def clear(self, value = 0):

 for row in range(self.num_rows()):

 row.clear(value)

array.py

8/22/2017

3

13

2-D Array Implementation

 Subscript notation:
 y = x[r, c] x[r, c] = z

 Subscripts are passed to the methods as a tuple.

 Must verify the size of the tuple.

14

2-D Array Implementation

class Array2D :

...

 def __getitem__(self, ndx_tuple):

 assert len(ndx_tuple) == 2, "Invalid number of array subscripts."

 row = ndx_tuple[0]

 col = ndx_tuple[1]

 assert row >= 0 and row < self.num_rows() \

 and col >= 0 and col < self.num_cols(), \

 "Array subscript out of range."

 the_row_array = self._the_rows[row]

 return the_row_array[col]

array.py

15

2-D Array Implementation

class Array2D :

...

 def __setitem__(self, ndx_tuple, value):

 assert len(ndx_tuple) == 2, "Invalid number of array subscripts."

 row = ndx_tuple[0]

 col = ndx_tuple[1]

 assert row >= 0 and row < self.num_rows() \

 and col >= 0 and col < self.num_cols(), \

 "Array subscript out of range."

 the_row_array = self._the_rows[row]

 the_row_array[col] = value

array.py

