Intro to Computer Science 11

Recursions (2)

Recursive binary search

bin_searchi{nums, target, left, right):

left > right: # not found

mid = {left + right) // Y
nuoms [mid] == target: ['}

noms [mid] < target: # search for upper half

left = mid + 1
bin searchinums, target, left, right)

fight = mid -1 # search for lower half
bin searchinums, target, left, right)

roms = [2, 5, 6, 7, 9, 10, 1Z]

printibin searchinums, Z, 0, lenf{nums)-1})} # True
printibin searchinms, 12, 0, len{nums)-1)) # True
printibin search{nums, 6, 0, len{nums)-1}) # True

printibin searchinums, 22, 0, leninums)-1}] # False
printibin searchinums, 0, 0, len{nums)-1)) # False

Check if a number is a prime
def 13_pr1me{h I

1t x ==
return True
elit b & x == [
return False
else:

return 1s primeth, = - 1)

print{'iz prime(5, 4 ', is prime(5.4))
print{'is prime(l3, 127 ', 1s prime(ls, 1Z))
print{'is primei2l, 19) ', 1s prime(20,19))
print({'is prime (33, 22) ', 1s prime(33, 3Z))

Playing Tic-Tac-Toe

 Consider the game of tic-tac-toe

o If you play tic-tac-toe against a
computer, how does the computer
make its decisions?

P
O
O

O
X
X

X
X
o

Game Tree

 Provides the sequence of all possible
moves that can be made in the game
for both opponents.

« The computer can evaluate the game tree
and determine its best move.

« For tic-tac-toe, the best move is one that
- allows it to win before its opponent
- in the fewest possible moves.

« The “computer” can evaluate every
possible move much faster than a human.

Game Tree Example

 Suppose you (O) have been playing
against the computer (X)
and now it's the computer's turn.

O
OX

Game Tree Example

« The computer would need to evaluate
all of its possible moves to determine

O
O| X

X

Game Tree Example

The following figure shows the rest of
the tree for a movement in the upper-
right square.

O] |X

X

oo
xX|O
QX\X
F
[©])
X
X[O] <

The 8-Queens Problem

« The task is to place 8 queens onto a
chessboard such that no queen can
attack another queen.
 Uses a standard 8 x 8 chess board.
 There are 92 solutions to this problem.

Queen Moves

« The queen can move and attack any
piece of the opponent by moving in
any direction along a straight line.

10

11

Sample Solutions

4-Queens Problem

« To develop an algorithm, we consider
the smaller 4-queens problem.

. Since no two queens can occupy the same
column, we can proceed one column at a
time.

» Place a queen in position (0, 0).

W

4-Queens Problem

 This move eliminates a number of
squares for the placement of additional
queens.

13

14

4-Queens Problem

« We move to the second column and
place a queen at position (2, 1)

4-Queens Problem

o The 3* queen should be placed in the
3t column.

 But there are no open cells in the third
column.

e SO there is no solution based on the
placement of the first 2 queens.

4-Queens Problem

« We have to backtrack:

« go back to the previous column
o pickup the last queen placed

o try to find another valid cell in that
column.

17

4-Queens Problem

« Place a queen at position (3,1) and
move forward.

W

X
X
X

4-Queens Problem

o In the 3™ column, we can now place a
queen at position (1,2).

« But now we have no open slots in the
4™ column.

4-Queens Problem

« We again must backtrack and pick up
the queen from the 3¢ column.

o But there are no other empty cells in
the 3¢ column.

X
X
X
W

4-Queens Problem

« We must backtrack yet again and pick
up the queen from the 2 column.

o But there are no other empty cells in
the 2" column either.

Wy

XX

X
X
X

4-Queens Problem

o SO we backtrack one more time and
pick up the queen from the 1% column.

« We then try again to place a queen in
the 1%* column.

X

22

4-Queens Problem

o In the 1% column, we can place a queen
at position (1, 0).

X | X
Wy | x
X
X

4-Queens Problem

« We again continue with the process
and attempt to find open positions in
each of the remaining columns.

« We can use a similar approach to solve
the original 8-queens problem.

23

N-Queens Board ADT

o The n-queens board is used for
positioning queens on a square board
for use in solving the n-queens

problem.

. consists of n x n squares.

. each square is identified by index [0...n)

« NQueensBoard(n)
. Size()

« numQueens()

. unguarded(row, col)

. placeQueen(row, col)

. removeQueen(row, col)
. reset()

« draw()

8-Queens Solution

def solveNQueens (board, col):
if board.numQueens () == board.size ()
return True
else
for row in range(board.size()):
if board.unguarded(row, col):
board.placeQueen(row, col)
if board.solveNQueens(board, col+1l)
return True
else
board.removeQueen (row, col)

return False

