
Intro to Computer Science II

Recursions (2)

1

Recursive binary search

Check if a number is a prime

4

Playing Tic-Tac-Toe

 Consider the game of tic-tac-toe

 If you play tic-tac-toe against a
computer, how does the computer
make its decisions?

5

Game Tree

 Provides the sequence of all possible
moves that can be made in the game
for both opponents.
 The computer can evaluate the game tree

and determine its best move.

 For tic-tac-toe, the best move is one that
 allows it to win before its opponent

 in the fewest possible moves.

 The “computer” can evaluate every
possible move much faster than a human.

6

Game Tree Example

 Suppose you (O) have been playing
against the computer (X)

and now it's the computer's turn.

7

Game Tree Example

 The computer would need to evaluate
all of its possible moves to determine
the best.

8

Game Tree Example

 The following figure shows the rest of
the tree for a movement in the upper-
right square.

9

The 8-Queens Problem

 The task is to place 8 queens onto a
chessboard such that no queen can
attack another queen.

 Uses a standard 8 x 8 chess board.

 There are 92 solutions to this problem.

10

Queen Moves

 The queen can move and attack any
piece of the opponent by moving in
any direction along a straight line.

11

Sample Solutions

12

4-Queens Problem

 To develop an algorithm, we consider
the smaller 4-queens problem.

 Since no two queens can occupy the same
column, we can proceed one column at a
time.

 Place a queen in position (0, 0).

13

4-Queens Problem

 This move eliminates a number of
squares for the placement of additional
queens.

14

4-Queens Problem

 We move to the second column and
place a queen at position (2, 1)

15

4-Queens Problem

 The 3rd queen should be placed in the
3rd column.

 But there are no open cells in the third
column.

 So there is no solution based on the
placement of the first 2 queens.

16

4-Queens Problem

 We have to backtrack:

 go back to the previous column

 pickup the last queen placed

 try to find another valid cell in that
column.

17

4-Queens Problem

 Place a queen at position (3,1) and
move forward.

18

4-Queens Problem

 In the 3rd column, we can now place a
queen at position (1,2).

 But now we have no open slots in the
4th column.

19

4-Queens Problem

 We again must backtrack and pick up
the queen from the 3rd column.

 But there are no other empty cells in
the 3rd column.

20

4-Queens Problem

 We must backtrack yet again and pick
up the queen from the 2rd column.

 But there are no other empty cells in
the 2nd column either.

21

4-Queens Problem

 So we backtrack one more time and
pick up the queen from the 1st column.

 We then try again to place a queen in
the 1st column.

22

4-Queens Problem

 In the 1st column, we can place a queen
at position (1, 0).

23

4-Queens Problem

 We again continue with the process
and attempt to find open positions in
each of the remaining columns.

 We can use a similar approach to solve
the original 8-queens problem.

24

N-Queens Board ADT

 The n-queens board is used for
positioning queens on a square board
for use in solving the n-queens
problem.

 consists of n x n squares.

 each square is identified by index [0...n)

 NQueensBoard(n)

 size()

 numQueens()

 unguarded(row, col)

 placeQueen(row, col)

 removeQueen(row, col)

 reset()

 draw()

25

8-Queens Solution

def solveNQueens(board, col):

if board.numQueens() == board.size() :

return True

else :

for row in range(board.size()):

if board.unguarded(row, col):

board.placeQueen(row, col)

if board.solveNQueens(board, col+1) :

return True

else :

board.removeQueen(row, col)

return False

