
Intro to Computer Science II

Recursions (2)

1

Recursive binary search

Check if a number is a prime

4

Playing Tic-Tac-Toe

 Consider the game of tic-tac-toe

 If you play tic-tac-toe against a
computer, how does the computer
make its decisions?

5

Game Tree

 Provides the sequence of all possible
moves that can be made in the game
for both opponents.
 The computer can evaluate the game tree

and determine its best move.

 For tic-tac-toe, the best move is one that
 allows it to win before its opponent

 in the fewest possible moves.

 The “computer” can evaluate every
possible move much faster than a human.

6

Game Tree Example

 Suppose you (O) have been playing
against the computer (X)

and now it's the computer's turn.

7

Game Tree Example

 The computer would need to evaluate
all of its possible moves to determine
the best.

8

Game Tree Example

 The following figure shows the rest of
the tree for a movement in the upper-
right square.

9

The 8-Queens Problem

 The task is to place 8 queens onto a
chessboard such that no queen can
attack another queen.

 Uses a standard 8 x 8 chess board.

 There are 92 solutions to this problem.

10

Queen Moves

 The queen can move and attack any
piece of the opponent by moving in
any direction along a straight line.

11

Sample Solutions

12

4-Queens Problem

 To develop an algorithm, we consider
the smaller 4-queens problem.

 Since no two queens can occupy the same
column, we can proceed one column at a
time.

 Place a queen in position (0, 0).

13

4-Queens Problem

 This move eliminates a number of
squares for the placement of additional
queens.

14

4-Queens Problem

 We move to the second column and
place a queen at position (2, 1)

15

4-Queens Problem

 The 3rd queen should be placed in the
3rd column.

 But there are no open cells in the third
column.

 So there is no solution based on the
placement of the first 2 queens.

16

4-Queens Problem

 We have to backtrack:

 go back to the previous column

 pickup the last queen placed

 try to find another valid cell in that
column.

17

4-Queens Problem

 Place a queen at position (3,1) and
move forward.

18

4-Queens Problem

 In the 3rd column, we can now place a
queen at position (1,2).

 But now we have no open slots in the
4th column.

19

4-Queens Problem

 We again must backtrack and pick up
the queen from the 3rd column.

 But there are no other empty cells in
the 3rd column.

20

4-Queens Problem

 We must backtrack yet again and pick
up the queen from the 2rd column.

 But there are no other empty cells in
the 2nd column either.

21

4-Queens Problem

 So we backtrack one more time and
pick up the queen from the 1st column.

 We then try again to place a queen in
the 1st column.

22

4-Queens Problem

 In the 1st column, we can place a queen
at position (1, 0).

23

4-Queens Problem

 We again continue with the process
and attempt to find open positions in
each of the remaining columns.

 We can use a similar approach to solve
the original 8-queens problem.

24

N-Queens Board ADT

 The n-queens board is used for
positioning queens on a square board
for use in solving the n-queens
problem.

 consists of n x n squares.

 each square is identified by index [0...n)

 NQueensBoard(n)

 size()

 numQueens()

 unguarded(row, col)

 placeQueen(row, col)

 removeQueen(row, col)

 reset()

 draw()

25

8-Queens Solution

def solveNQueens(board, col):

if board.numQueens() == board.size() :

return True

else :

for row in range(board.size()):

if board.unguarded(row, col):

board.placeQueen(row, col)

if board.solveNQueens(board, col+1) :

return True

else :

board.removeQueen(row, col)

return False

