
Singly Linked lists

Revised based on textbook
author’s notes.

Consider this problem

• Given a sorted list of numbers, insert a
new number into this sorted list

– [3, 5, 7, 10, 12, 20]

– insert 6 into this list to become

– [3, 5, 6, 7, 10, 12, 20]

• How do YOU accomplish this seemly
simple task? Take 5 min to work it out.

Here is a possible solution

It takes 3*n steps to do this.

How many steps to complete this work?

Can we do better? How?

n steps

n steps

n steps

Let’s look at one issue at a time

• new_list = [x for x in my_list] + [k]
– We need to increase the capacity of the list to hold

the new element. Weather the list is implemented
as a Python list or an array, this would take n
steps.

• i = find_pos(k, my_list)
– We need to find the right spot for the new

number, which takes n steps

• for j in range(len(new_list)-1, i-1, -1):
– Shifting elements to the right takes n steps

Linked lists

• Use linked list we can make two of the
three operations in constant time!

Linked Structure
 Constructed using a collection of

objects called nodes.

 Each node contains data and at least
one reference or link to another node.

 Linked list – a linked structure in
which the nodes are linked together in
linear order.

Linked List

 Terms:

 node – each element in the list.

 head – first node in the list.

 tail – last node in the list; link field has a
null reference.

tail

How does it look like in Python?

 The nodes are constructed from a
simple storage class:

 List contains two nodes, a head and a
tail

class ListNode:

def __init__(self, data):

self.data = data

self.next = None

class UserList:

def __init__(self):

self.head = None

self.tail = None

How to build a list?
my_list = UserList() # initial list head == None

a_node = ListNode(12) # create a node

my_list.insert_after(node) # insert the node to list

my_list.insert_after(ListNode(3))# another node

tailhead

12

The ‘next’ field has a value of None

tailhead

12 3

Try out an example

Exercise: write the function
insert_before() that inserts the node
before the head.

Removing nodes
 An item can be removed from a linked list by

removing or unlinking the node containing
the item.

 Find the node containing the item.

 Unlink it from the list.

Removing nodes

 Removing a node from the middle of the list
requires a second external reference.

 Resulting list.

Removing Nodes

 Removing the first node is a special case.

 The head reference must be reposition to
reference the next node in the list.

Removing nodes

 Given the head reference, we can
remove a target from a linked list.

