Singly Linked lists

Revised based on textbook
author’s notes.

Consider this problem

* Given a sorted list of numbers, insert a
new number into this sorted list
—13,5,7,10, 12, 20]
— insert 6 into this list to become
—13,5,6,7, 10,12, 20]

* How do YOU accomplish this seemly
simple task? Take 5 min to work it out.

Here is a possible solution

n steps
AN 7

def\insert sortedil, my list):
" Insert k into a sorted list myAist"""
new list = [x for = in my_list] +/[k] # hawve k to occupy a spot!
1 =_find pos(k, my_list)
J in range(leninew list)-1,"1-1, -1): # shift each element right

n steps

new list[j] = new list[j-1]
]ﬂ.Ste})S - # now put k where it helongs to

new list[]] = k
return new list

def find posik, my list):
"t Find where k should be in the sorted list my list"""
i=20
while 1 < lenimy_list) =nd k > my list[1]:
1+=1
return 1 # 1 could be lenimy list)!

How many steps to complete this work?

It takes 3"n steps to do this.

Can we do better? How?

Let’'s look at one issue at a time

* new_list = [x for x in my_list] + [Kk]

— We need to increase the capacity of the list to hold
the new element. Weather the list is implemented
as a Python list or an array, this would take n
steps.

* i=find_pos(k, my_list)

— We need to find the right spot for the new
number, which takes n steps

* forjin range(len(new_list)-1, i-1, -1):
— Shifting elements to the right takes n steps

Linked lists

* Use linked list we can make two of the
three operations in constant time!

Linked Structure

 Constructed using a collection of
objects called nodes.

« Each node contains data and at least
one reference or link to another node.

o Linked list — a linked structure in
which the nodes are linked together in
linear order.

head

1]
- =E—-EE)

Linked List

e lerms:
« hode — each element in the list.
« head — first node in the list.

o tail — last node in the list; link field has a
null reference.

head tail

[[2] ’—H[SZ] -—H[m] 0—]—»[[36] .—H[m]" :

How does it look like in Python?

« The nodes are constructed from a
simple storage class:

class ListNode:
def 1nit (self, data):
self.data = data
self.next = None

« List contains two nodes, a head and a
tail

class Userlist:

def init (self):
self.head = None
self.talil = None

How to build a list?

my list = UserList() # initial list head == None

a node = ListNode(l2) # create a node

my list.insert after (node) # insert the node to list
my list.insert after (ListNode (3))# another node

head tail The ‘next’ field has a value of None

1 1 insert after(self, node):

l l """ Tnsert a node with data at the end of the list
self.1s empty(): # the node will be the first one in list
self head = node

12 . self. tail = node
: # insert after the current tail
self. tail. next = noaode

self. tail = naode

head tail

(2) &G &

Try out an example

| random
userlist

test listi):
"tk test program for singly linked list """

my list = UserList()

nums = [randint{l, 100) 1 range (10}]
* ImsS :
my list. insert after(ListNode (x))

prinktimy list)

test list()

Exercise: write the function
insert before () thatinserts the node

before the head.

Removing nodes

 An item can be removed from a linked list by
removing or unlinking the node containing
the item.

 Find the node containing the item.

head curNode

? 11

[?6‘ ° :Ll [2] :[@ i :[W i :' [36] > [13] °

o Unlink it from the list.

head curNode

? 9.

EE- - EE-{E-EE-EE

Removing nodes

« Removing a node from the middle of the list
requires a second external reference.

head predNode curNode

. A\ . Y . @ .
EE- B EE-EE

Bk

Y
—
P
N
S

. Resulting list.

head

Y

EE- O EE-EE

Removing Nodes

« Removing the first node is a special case.

 The head reference must be reposition to
reference the next node in the list.

Removing nodes

« Given the head reference, we can
remove a target from a linked list.

remowve_node(self, target):
"t Remowve the node containing the target

prev =

cur = self. head
cur = cur. data = target:
prev = cux
Ccur = cur.next t}
cur = : # found 1t and remowve 1t
cur == self head:

self . head = cur.next # head 1s removed, reset head

prev.next = cur.next # remove a middle node

