Priority Queue ADT

Revised based on textbook
author’s notes.

Priority Queues

« Some applications require the use of a
queue in which items are assigned a
priority.

o higher priority items are dequeued first.
. items with equal priority still follow FIFO.

Some Applications

* Operating systems such as Linux use
priority queues to manage their jobs (try
e.g., the top command)

* Simulations use priority queues to
manage events to be simulated

* All other FIFO queues, e.g., online
shopping queues are special cases of
priority queue, that is, time is the priority

The Priority Queue ADT

« A priority queue is a queue in which
each item is assigned a priority and
items with a higher priority are
removed before those with lower
priority.

. Integer values are used for the priorities.
. Smaller integers have a higher priority.

The Operations

 PriorityQueue()

. is_empty()

. len()

« enqueue(item, priority)
. dequeue()

. peek()

Priority Queue Example

 Consider the following code segment:

Q = PriorityQueue(6)

Q.enqueue (“purple”, 5)
Q.enqueue(“black”, 1)
Q.enqueue (“orange”, 3)
Q.enqueue (“white”, 0)
Q.enqueue (“green”, 1)

Q.enqueue (“yellow”, 5)

é N

((0) “white’] {(1) “black’] (1) “green’] ((3) “orange’] [(5) “purple’} ((5) “yellow’

\. v

Priority Queue Implementation

« How should the ADT be implemented.
We must consider:

o A priority must be associated with each
item in the queue.

« The next item dequeued is the item with
the highest priority.

o If multiple items have the same priority,
those must be dequeued in a FIFO order.

Priority Queue Implementation

* There can be many different
implementations, we’ll consider three here

— Textbook approach
— Linked list
— Bounded array with linked lists

1. Textbook approach

 The priority queue is implemented as a
Python list

« The enqueue operation puts the item at
the end of the queue (as in our FIFO
queue)

« The dequeue operation takes the item
with the highest priority otf the queue
(note: the item could be anywhere in
the queue!)

Queue operations

def engueve(self, item, priority):
"t"vadds the given item to the queuaes, """
Create a new instance of the storage class and sppend it to the list.
entry = PrioritylEntry(1tem, priority)
self. glist. append{ entry)

def dequene(self)
"t Remowves arnd returns the first item in the guewe. """
assert not self. 1s_empty (), "Cannot dequewve from an empby queue.

Find the entry with the highest priority
top = self. find top priority()

Remowe the entry with the highest priority and return the item.
entry = self. _glist. pop(top)
return entry

def peek(self }:
"""Return the walue of the top pricrity without removing it"""
assert not self. 1s_empty (), "Cannot peek from an empty quews. "

top = self find top priority()
return self. glist[top].item

def find top priority(self §:
""'Find the entry with the highest priority. """
highest = self. glist[0].priority
high index = 0
for 1 in range(len{ self) §
See 1f the ith entry contains = higher priority (smaller integer).
1t self. glist[i].priority < highest
highest = self. glist[i].priocrity
high index = 1

return high index

Details of find_top_priority()

Basically it is the same process of finding a
minimum in a list.

def find_top_priority(self):
highest_index =0
highest = self._qlist[highest_index].priority
for i in range(len(self)):
if highest > self._qlist[i].priority: # smaller value has higher priority
highest_index =1
highest = self._qlist[i].priority
return highest_index

Try the program testpriorityqueue.py

Complexity of operations

What is the complexity for dequeue?

O(n)

What is the complexity for enqueue?

O(1)

2. Bounded Priority Queue

« A bounded priority queue has a fixe
set of priorities

« We use an array to represent the set of
priorities, each array element
maintains a queue of the items with
the same priority

Bounded Priority Queue

 The following example shows a
bounded priority queue with six levels

(&)} BN w N - "O

14

Bounded Priority Q
Implementation g

bpriorityq.py

from array204 import Array
from 1listqueue import Queue

class BPriorityQueue

def 1init (self, num levels = 6):
self. gsize = 0
self. glevels = Array(num levels)
for 1 in range(num levels)
self. glevels[i] = Queue()

def is empty(self):
return len(self) == 0

def len (self):
return len(self. gsize)

Bounded Priority Q
Implementation g

class BPriorityQueue

-
def enqueue(self, item, priority):
assert priority >= 0 and priority < len(self. glevels), \
"Invalid priority level."
self. glevels[priority].enqueue(item)

def dequeue(self)
Make sure the queue 1is not empty.
assert not self.is empty (), "Cannot dequeue from an empty queue."

Find the first non-empty queue.
top index = self.find top priority queue ()

We know the queue is not empty, so dequeue from the ith queue.
return self. glevels[top index].dequeue ()

Bounded Priority Q
Implementation g

class BPriorityQueue

g
def find top priority queue (self):

find the first non-empty queue, a.k.a. highest priority

i =20

p = len(self. glevels)

while 1 < p and self. glevels[1].1s empty ()

i +=1
return 1

Unbounded Priority Q: Linked List

« We can use a singly linked list:
« Head and tail references.
« Append new entries to the end.

PriorityQueue
[head size qhead\

[[?]? o\ :[[1] o\ :[[3]0 c\ :[[0]0 o\ :[[1] o\ :[[5]0 °
| “pu:ple” l | “ble‘;ck” l |“ora‘rrlge”l l “wr‘lrite” l l “gr;en” I | “yel‘l'ow” l

18

Priority Queue Analysis

« The worst case analysis for the two
implementations.

Queue Operation Python List Linked List

g = PriorityQueue() O(1) O(1)
len(q) O(1) O(1)
g.is_empty() O(1) O(1)
g.enqueue(x) O(n) O(1)

X = g.dequeue() O(n) O(n)

Implement enqueue()

* Your task is to implement the enqueue()
method for a linked list based queue in
which other necessary methods have been
implemented

