
Simulation
An Application of Queue ADT

Revised based on textbook
author’s notes.

2

Computer Simulations

 Computers can be used to model and
simulate real-world systems and
phenomena.
 Computer applications.

 Designed to represent and react to significant
events in the system.

 Examples:
 Weather forecasting

 Flight simulators

 Business activities

3

Airline Ticket Counter

 How many ticket agents are needed at
certain times of the day in order to
provide timely service?

 Too many agents will cost the airline
money.

 Too few will result in angry customers.

 A computer simulation can be
developed to model this real system.

4

Queuing System

 A system where customers must stand in
line awaiting service.

 A queue structure is used to model the
system.

 Simple systems only require a single queue.

 The goal is to study certain behaviors or
outcomes.
 average wait time

 average queue length

 average service time

5

Discrete Event Simulation

 Consists of a sequence of significant
events that cause a change in the system.

 Time driven and performed over a preset
time period.

 Passing of time is represented by a loop, one
iteration per clock tick.

 Events can only occur at discrete time
intervals.

 Time units must be small enough to
accommodate the events.

Structure of a simulation program

for each time step in range of total time:
processing event type one
processing event type two
…

7

Sample Events

 Some sample events include:

 Customer arrival

 Start or end of a transaction (service)

 Customer departure

8

System Parameters

 A simulation is commonly designed to
allow user supplied parameters to define
conditions:
 Length of the simulation (begins at time 0).
 Number of servers.
 Expected time to complete a transaction.
 Distribution of arrival times.

 By adjusting these, the conditions can be
changed under which the simulation is
performed.

9

Event Rules

 A set of rules are defined for handling
the events during each tick of the
clock.

 The specific rules depend on what is
being studied.

10

Sample Event Rules

 To determine the average wait time:
 If a customer arrives, he is added to the

queue.
 at most one customer can arrive per time step.

 If there are free servers and customers
waiting, the next customer in line begins her
transaction.
 we begin a transaction for each free server.

 If a transaction ends, the customer departs
and the server becomes free.
 multiple transactions can complete in one time

step.

11

Random Events

 To correctly model a queuing system,
some events must occur at random. (i.e.
customer arrival)

 We need to model this action as close as
possible.
 Specify the odds of a customer arriving at

each time step as the average time between
arrivals.

 Use a random number generator to produce a
value.

 Compare the value to the average arrival
time.

12

Sample Simulation

 Analyze the average time passengers
have to wait for service at an airport
ticket counter.

 Multiple ticket agents.

 Multiple customers that must wait in a
single line.

13

System Inputs

 The program will prompt the user for
the queuing system parameters.

 For simplicity, we use minutes as the
discrete time units.

Number of minutes to simulate: 25

Number of ticket agents: 2

Average service time per passenger: 3

Average time between passenger arrival: 2

14

System Outputs

 After performing the simulation, the
program will produce the following
output:

Number of passengers served = 12

Number of passengers remaining in line = 1

The average wait time was 1.17 minutes.

15

Debug Info
 We also display event information that

can help verify the validity of the
program.

Time 2: Passenger 1 arrived.

Time 2: Agent 1 started serving passenger 1.

Time 3: Passenger 2 arrived.

Time 3: Agent 2 started serving passenger 2.

Time 5: Passenger 3 arrived.

Time 5: Agent 1 stopped serving passenger 1.

Time 6: Agent 1 started serving passenger 3.

Time 6: Agent 2 stopped serving passenger 2.

Time 8: Passenger 4 arrived.

Time 8: Agent 2 started serving passenger 4.

Time 9: Agent 1 stopped serving passenger 3.

Time 10: Passenger 5 arrived.

Time 10: Agent 1 started serving passenger 5.

Time 11: Passenger 6 arrived.

Time 11: Agent 2 stopped serving passenger 4.

Time 12: Agent 2 started serving passenger 6.

Time 13: Passenger 7 arrived.

16

Class Organization

 Our design will be an object-oriented
solution with multiple classes.

 Passenger – store info related to a
passenger.

 TicketAgent – store info related to an
agent.

 TicketCounterSimulation – manages the
actual simulation.

17

Passenger Class

class Passenger :

Creates a passenger object.

def __init__(self, id_num, arrival_time):

self._id_num = id_num

self._arrival_time = arrival_time

Gets the passenger's id number.

def id_num(self) :

return self._id_num

Gets the passenger's arrival time.

def time_arrived(self) :

return self._arrival_time

simpeople.py

18

TicketAgent Class

class TicketAgent :

def __init__(self, id_num):

self._id_num = id_num

self._passenger = None

self._stop_time = -1

def id_num(self):

return self._id_num

def is_free(self):

return self._passenger is None

def is_finished(self, cur_time):

return self._passenger is not None and self._stop_time == cur_time

def start_service(self, passenger, stop_time):

self._passenger = passenger

self._stop_time = stop_time

def stop_service(self):

the_passenger = self._passenger

self._passenger = None

return the_passenger

simpeople.py

19

The Simulation Class

from array import Array

from llistqueue import Queue

from simpeople import TicketAgent, Passenger

class TicketCounterSimulation :

def __init__(self, num_agents, num_minutes,

between_time, service_time):

Parameters supplied by the user.

self._arrive_prob = 1.0 / between_time

self._service_time = service_time

self._num_minutes = num_minutes

Simulation components.

self._passenger_q = Queue()

self._the_agents = Array(num_agents)

for i in range(num_agents) :

self._the_agents[i] = TicketAgent(i+1)

Computed during the simulation.

self._total_waitTime = 0

self._num_passengers = 0

...

simulation.py

20

The Simulation Class

class TicketCounterSimulation :

...

Run the simulation using the parameters supplied earlier.

def run(self):

for cur_time in range(self._num_minutes + 1) :

self._handle_arrival(cur_time)

self._handle_begin_service(cur_time)

self._handle_end_service(cur_time)

Print the simulation results.

def print_results(self):

num_served = self._num_passengers - len(self._passengerq)

avg_wait = float(self._total_waitTime) / num_served

print("")

print("Number of passengers served = ", num_served)

print("Number of passengers remaining in line = %d" %

len(self._passenger_q))

print("The average wait time was %4.2f minutes." % avg_wait)

The remaining methods that have yet to be implemented.

def _handle_arrive(cur_time): # Handles simulation rule #1.

def _handle_begin_service(cur_time): # Handles simulation rule #2.

def _handle_end_service(cur_time): # Handles simulation rule #3.

simulation.py

21

The Simulation Class

class TicketCounterSimulation :

...

The remaining methods that have yet to be implemented.

def _handle_arrive(cur_time): # Handles simulation rule #1.

def _handle_arrival(self, cur_time):

p = random.random()

if p < self._arrive_prob: # a passenger should arrive

passenger = Passenger(self._num_passengers, cur_time)

self._passenger_q.enqueue(passenger)

print('Time ', cur_time, ': Passenger ', \

self._num_passengers, ' arrived.')

self._num_passengers += 1

def _handle_begin_service(cur_time): # Handles simulation rule #2.

def _handle_end_service(cur_time): # Handles simulation rule #3.

simulation.py

22

The Simulation Class

class TicketCounterSimulation :

...

The remaining methods that have yet to be implemented.

def _handle_begin_service(cur_time): # Handles simulation rule #2.

def _handle_begin_service(self, cur_time):

if self._passenger_q.is_empty() == False: # handle a customer

agent_ID = self._find_free_agent()

if agent_ID >= 0: # found a free one

this_passenger = self._passenger_q.dequeue()

stop_time = cur_time + self._service_time

self._the_agents[agent_ID].start_service(this_passenger, stop_time)

self._total_wait_time += cur_time - this_passenger._arrival_time

print('Time ', cur_time, ': Agent ', agent_ID, \

' started serving passenger ', this_passenger.id_num(), '.')

def _handle_end_service(cur_time): # Handles simulation rule #3.

simulation.py

23

The Simulation Class

class TicketCounterSimulation :

...

The remaining methods that have yet to be implemented.

def _handle_end_service(cur_time): # Handles simulation rule #3.

def _handle_end_service(self, cur_time):

agent_ID = self._find_finish_agent(cur_time)

if agent_ID >= 0: # found one who should complete the service

this_passenger = self._the_agents[agent_ID].stop_service()

print('Time ', cur_time, ': Agent ', agent_ID, \

' stopped serving passenger ', this_passenger.id_num(), '.')

simulation.py

24

Simulation Objects

 Sample instances of each class.

25

Sample Results
Num

Minute
s

Num
Agents

Avg
Service

Time
Between

Avg
Wait

Passengers
Served

Passengers
Remaining

100 2 3 2 2.49 49 2

500 2 3 2 3.91 240 0

1000 2 3 2 10.93 490 14

5000 2 3 2 15.75 2459 6

10000 2 3 2 21.17 4930 18

100 2 4 2 10.60 40 11

500 2 4 2 49.99 200 40

1000 2 4 2 95.72 400 104

5000 2 4 2 475.91 2000 465

10000 2 4 2 949.61 4000 948

100 3 4 2 0.51 51 0

500 3 4 2 0.50 240 0

1000 3 4 2 1.06 501 3

5000 3 4 2 1.14 2465 0

10000 3 4 2 1.21 4948 0

