
Binary Tree Implementation
And Applications

Revised based on textbook
author’s notes.

Re-build the tree from traversals

From these traversals,
can we rebuild the tree?

The answer is ‘Yes.’

Re-build the tree from traversals
inorder traversal ...
B, X, Z, G, T, J, C, K, R, M,
preorder traversal ...
T, X, B, G, Z, C, J, R, K, M,

•From pre-order, we know T is the root.
•From in-order, we know T has left child(ren)
•From pre-order, we know X is the root of left branch
•From in-order, we know X has left child(ren)
•From pre-oder, we know B is the root of left branch of X
•Because B doesn’t have child, from pre-order, we know G is the root
• of the right subtree of X
•…

4

Breadth-First (level order) Traversal

 The nodes are visited by level, from
left to right.

 The previous traversals are all depth-first
traversals.

5

Breadth-First Traversal
 Recursion can not be used with this

traversal.

 We can use a queue and an iterative loop.
def breadth_first_trav(bintree):

q = Queue()

q.enqueue(bintree)

while not q.is_empty() :

Remove the next node from the queue and visit it.

node = q.dequeue()

print(node.data)

Add the two children to the queue.

if node.left is not None :

q.enqueue(node.left)

if node.right is not None :

q.enqueue(node.right)

Try testbintree.py

Array based binary trees

• It is very natural to implement binary
trees using linked nodes.

• For binary tree that has “many” nodes, it
may be more effective and efficient to
implement it using an array!

Relation among nodes

• If the root is at index n, its left child will be
at index 2*n+1, its right child will be at
index 2*n+2

• If a node is at index k, its parent is at index
(k-1) // 2

An array-based tree example

T Z K MX C B G J R

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Implementation: constructor

Implementation: adding node

Implementation: accessors

Traversals: in-order

Traversals: pre-order

Traversals: post-order

Traversals: level-order

