
Binary Tree Application
Expression Tree

Revised based on textbook
author’s notes.

2

Expression Trees

 A binary tree in which the operators
are stored in the interior nodes and the
operands are sored in the leaves.

 Used to evaluate an expression.

 Used to convert an infix expression to
either prefix or postfix notation.

3

Expression Trees
 The tree structure is based on the order

in which the operators are evaluated.

 Operators in lower-level nodes are
evaluated first.

 The last operator evaluated is in the root
node.

4

Expression Tree ADT
 An expression tree is a binary tree

representation of an arithmetic
expression.

 Contains various operators (+, -, *, /, %)

 Contains operands comprised of single
integer digits and single-letter variables.

 ExpressionTree(exp_str)

 evaluate(var_dict)

 __str__()

5

Expression Tree Example

 We can use the ADT to evaluate basic
arithmetic expressions of any size.
Create a dictionary containing values for the variables.

vars = { 'a' : 5, 'b' : 12 }

Build the tree for a sample expression and evaluate it.

exp_tree = ExpressionTree("(a/(b-3))")

print("The result = ", exp_tree.evaluate(vars))

We can change the value assigned to a variable

and reevaluate.

vars['a'] = 22

print("The result = ", exp_tree.evaluate(vars))

Try ex1.py

6

Expression Tree Implementation

class ExpressionTree :

def __init__(self, exp_str):

self._exp_tree = None

self._build_tree(exp_str) # recursion

def evaluate(self, var_map):

return self._eval_tree(self._exp_tree, var_map) # recursion

def __str__(self):

return self._build_string(self._exp_tree)

...

Storage class for creating the tree nodes.

class _ExpTreeNode :

def __init__(self, data):

self.element = data

self.left = None

self.right = None

exptree.py

7

Expression Tree Evaluation

 We can develop an algorithm to
evaluate the expression.

 Each subtree represents a valid
subexpression.

 Lower-level subtrees have higher
precedence.

 For each node, the two subtrees must be
evaluated first.

 How does it work?

8

Evaluation Call Tree

9

Expression Tree Implementation

class ExpressionTree :

...

def _eval_tree(self, subtree, var_dict):

See if the node is a leaf node

if subtree.left is None and subtree.right is None :

Is the operand a literal digit?

if subtree.element >= '0' and subtree.element <= '9' :

return int(subtree.element)

else : # Or is it a variable?

assert subtree.element in var_dict, "Invalid variable."

return var_dict[subtree.element]

Otherwise, it's an operator that needs to be computed.

else :

Evaluate the expression in the subtrees.

lvalue = _eval_tree(subtree.left, var_dict)

rvalue = _eval_tree(subtree.right, var_dict)

Evaluate the operator using a helper method.

return compute_op(lvalue, subtree.element, rvalue)

exptree.py

10

String Representation

 To convert an expression tree to a
string, we must perform an infix
traversal.

8 * 5 + 9 / 7 - 4

11

String Representation

 The result was not correct because
required parentheses were missing.

 Can easily create a fully parenthesized
expression.

((8 * 5) + (9 / (7 - 4)))

Class activity to implement this __str__() method.

12

Expression Tree Implementation

class ExpressionTree :

...

def _build_string(self, tree_node):

If the node is a leaf, it's an operand.

if tree_node.left is None and tree_node.right is None :

return str(tree_node.element)

Otherwise, it's an operator.

else :

exp_str = '('

exp_str += self._build_string(tree_node.left)

exp_str += str(tree_node.element)

exp_str += self._build_string(tree_node.right)

exp_str += ')'

return exp_str

exptree.py

13

Expression Tree Construction

 An expression tree is constructed by
parsing the expression and examining
the tokens.

 New nodes are inserted as the tokens are
examined.

 Each set of parentheses will consist of:

 an interior node for the operator

 two children either single valued or a
subexperssion.

14

Expression Tree Construction

 For simplicity, we assume:

 the expression is stored in a string with no
white space.

 the expression is valid and fully
parenthesized.

 each operand will be a single-digit or
single-letter variable.

 the operators will consist of +, -, *, /, %

15

Expression Tree Construction

 Consider the expression (8*5)

 The process starts with an empty root
node set as the current node:

 The action at each step depends on the
current token.

16

Expression Tree Construction

 When a left parenthesis is encountered:
(8*5)

 a new node is created and linked as the
left child of the current node.

 descend down to the new node.

17

Expression Tree Construction

 When an operand is encountered:
(8*5)

 the data field of the current node is set to
contain the operand.

 move up to the parent of current node.

18

Expression Tree Construction

 When an operator is encountered:
(8*5)

 the data field of the current node is set to the
operator.

 a new node is created and linked as the right
child of the current node.

 descend down to the new node.

19

Expression Tree Construction

 Another operand is encountered: (8*5)

20

Expression Tree Construction

 When a right parenthesis: (8*5)

 move up to the parent of the current node.

21

Expression Example #2

 Consider another expression:
((2*7)+8)

22

Expression Tree Implementation

class ExpressionTree :

...

def _build_tree(self, exp_str):

Build a queue containing the tokens from the expression.

expQ = Queue()

for token in exp_str :

expQ.enqueue(token)

Create an empty root node.

self._exp_tree = _ExpTreeNode(None)

Call the recursive function to build the tree.

self._rec_build_tree(self._exp_tree, expQ)

exptree.py

23

Expression Tree Implementation

class ExpressionTree :

...

def _rec_build_tree(self, cur_node, expQ):

Extract the next token from the queue.

token = expQ.dequeue()

See if the token is a left paren: '('

if token == '(' :

cur_node.left = _ExpTreeNode(None)

build_treeRec(cur_node.left, expQ)

The next token will be an operator: + - / * %

cur_node.data = expQ.dequeue()

cur_node.right = _ExpTreeNode(None)

self._build_tree_rec(cur_node.right, expQ)

The next token will be a), remove it.

expQ.dequeue()

Otherwise, the token is a digit.

else :

cur_node.element = token

exptree.py

