
Binary Tree Application
Expression Tree

Revised based on textbook
author’s notes.

2

Expression Trees

 A binary tree in which the operators
are stored in the interior nodes and the
operands are sored in the leaves.

 Used to evaluate an expression.

 Used to convert an infix expression to
either prefix or postfix notation.

3

Expression Trees
 The tree structure is based on the order

in which the operators are evaluated.

 Operators in lower-level nodes are
evaluated first.

 The last operator evaluated is in the root
node.

4

Expression Tree ADT
 An expression tree is a binary tree

representation of an arithmetic
expression.

 Contains various operators (+, -, *, /, %)

 Contains operands comprised of single
integer digits and single-letter variables.

 ExpressionTree(exp_str)

 evaluate(var_dict)

 __str__()

5

Expression Tree Example

 We can use the ADT to evaluate basic
arithmetic expressions of any size.
Create a dictionary containing values for the variables.

vars = { 'a' : 5, 'b' : 12 }

Build the tree for a sample expression and evaluate it.

exp_tree = ExpressionTree("(a/(b-3))")

print("The result = ", exp_tree.evaluate(vars))

We can change the value assigned to a variable

and reevaluate.

vars['a'] = 22

print("The result = ", exp_tree.evaluate(vars))

Try ex1.py

6

Expression Tree Implementation

class ExpressionTree :

def __init__(self, exp_str):

self._exp_tree = None

self._build_tree(exp_str) # recursion

def evaluate(self, var_map):

return self._eval_tree(self._exp_tree, var_map) # recursion

def __str__(self):

return self._build_string(self._exp_tree)

...

Storage class for creating the tree nodes.

class _ExpTreeNode :

def __init__(self, data):

self.element = data

self.left = None

self.right = None

exptree.py

7

Expression Tree Evaluation

 We can develop an algorithm to
evaluate the expression.

 Each subtree represents a valid
subexpression.

 Lower-level subtrees have higher
precedence.

 For each node, the two subtrees must be
evaluated first.

 How does it work?

8

Evaluation Call Tree

9

Expression Tree Implementation

class ExpressionTree :

...

def _eval_tree(self, subtree, var_dict):

See if the node is a leaf node

if subtree.left is None and subtree.right is None :

Is the operand a literal digit?

if subtree.element >= '0' and subtree.element <= '9' :

return int(subtree.element)

else : # Or is it a variable?

assert subtree.element in var_dict, "Invalid variable."

return var_dict[subtree.element]

Otherwise, it's an operator that needs to be computed.

else :

Evaluate the expression in the subtrees.

lvalue = _eval_tree(subtree.left, var_dict)

rvalue = _eval_tree(subtree.right, var_dict)

Evaluate the operator using a helper method.

return compute_op(lvalue, subtree.element, rvalue)

exptree.py

10

String Representation

 To convert an expression tree to a
string, we must perform an infix
traversal.

8 * 5 + 9 / 7 - 4

11

String Representation

 The result was not correct because
required parentheses were missing.

 Can easily create a fully parenthesized
expression.

((8 * 5) + (9 / (7 - 4)))

Class activity to implement this __str__() method.

12

Expression Tree Implementation

class ExpressionTree :

...

def _build_string(self, tree_node):

If the node is a leaf, it's an operand.

if tree_node.left is None and tree_node.right is None :

return str(tree_node.element)

Otherwise, it's an operator.

else :

exp_str = '('

exp_str += self._build_string(tree_node.left)

exp_str += str(tree_node.element)

exp_str += self._build_string(tree_node.right)

exp_str += ')'

return exp_str

exptree.py

13

Expression Tree Construction

 An expression tree is constructed by
parsing the expression and examining
the tokens.

 New nodes are inserted as the tokens are
examined.

 Each set of parentheses will consist of:

 an interior node for the operator

 two children either single valued or a
subexperssion.

14

Expression Tree Construction

 For simplicity, we assume:

 the expression is stored in a string with no
white space.

 the expression is valid and fully
parenthesized.

 each operand will be a single-digit or
single-letter variable.

 the operators will consist of +, -, *, /, %

15

Expression Tree Construction

 Consider the expression (8*5)

 The process starts with an empty root
node set as the current node:

 The action at each step depends on the
current token.

16

Expression Tree Construction

 When a left parenthesis is encountered:
(8*5)

 a new node is created and linked as the
left child of the current node.

 descend down to the new node.

17

Expression Tree Construction

 When an operand is encountered:
(8*5)

 the data field of the current node is set to
contain the operand.

 move up to the parent of current node.

18

Expression Tree Construction

 When an operator is encountered:
(8*5)

 the data field of the current node is set to the
operator.

 a new node is created and linked as the right
child of the current node.

 descend down to the new node.

19

Expression Tree Construction

 Another operand is encountered: (8*5)

20

Expression Tree Construction

 When a right parenthesis: (8*5)

 move up to the parent of the current node.

21

Expression Example #2

 Consider another expression:
((2*7)+8)

22

Expression Tree Implementation

class ExpressionTree :

...

def _build_tree(self, exp_str):

Build a queue containing the tokens from the expression.

expQ = Queue()

for token in exp_str :

expQ.enqueue(token)

Create an empty root node.

self._exp_tree = _ExpTreeNode(None)

Call the recursive function to build the tree.

self._rec_build_tree(self._exp_tree, expQ)

exptree.py

23

Expression Tree Implementation

class ExpressionTree :

...

def _rec_build_tree(self, cur_node, expQ):

Extract the next token from the queue.

token = expQ.dequeue()

See if the token is a left paren: '('

if token == '(' :

cur_node.left = _ExpTreeNode(None)

build_treeRec(cur_node.left, expQ)

The next token will be an operator: + - / * %

cur_node.data = expQ.dequeue()

cur_node.right = _ExpTreeNode(None)

self._build_tree_rec(cur_node.right, expQ)

The next token will be a), remove it.

expQ.dequeue()

Otherwise, the token is a digit.

else :

cur_node.element = token

exptree.py

