Binary Tree Application
Expression Tree

Revised based on textbook
author’s notes.

Expression Irees

A binary tree in which the operators
are stored in the interior nodes and the
operands are sored in the leaves.

 Used to evaluate an expression.

 Used to convert an infix expression to
either prefix or postfix notation.

Expression Irees

o The tree structure is based on the order
in which the operators are evaluated.

« Operators in lower-level nodes are
evaluated first.

« The last operator evaluated is in the root
node.

Expression Tree ADT

« An expression tree is a binary tree
representation of an arithmetic
expression.

 Contains various operators (+, -, ¥, /, %)

 Contains operands comprised of single
integer digits and single-letter variables.

« ExpressionTree(exp_str)
« evaluate(var_dict)

e str ()

Q1

Expression Tree Example

o« We can use the ADT to evaluate basic

arithmetic expressions of any size.

Create a dictionary containing values for the variables.
vars = { 'a' : 5, 'b' : 12 }

Build the tree for a sample expression and evaluate 1it.
exp tree = ExpressionTree("(a/(b-3))")
print ("The result = ", exp tree.evaluate(vars))

We can change the value assigned to a variable
and reevaluate.

vars['a'] = 22

print ("The result = ", exp tree.evaluate(vars))

Try exl.py

Expression Tree Implementation

class ExpressionTree

def init (self, exp str):
self. exp tree = None
self. build tree(exp str) # recursion

def evaluate(self, var map):
return self. eval tree(self. exp tree, var map) # recursion

def str (self):
return self. build string(self. exp tree)

#

Storage class for creating the tree nodes.
class ExpTreeNode
def init (self, data):
self.element = data
self.left = None
self.right = None

Expression Tree Evaluation

« We can develop an algorithm to
evaluate the expression.

 Hach subtree represents a valid
subexpression.

» Lower-level subtrees have higher
precedence.

« For each node, the two subtrees must be
evaluated first.

« How does it work?

Evaluation Call Tree

Expression Tree Implementation

class ExpressionTree
R
def eval tree(self, subtree, var dict):
See 1f the node is a leaf node
if subtree.left is None and subtree.right is None
Is the operand a literal digit?

if subtree.element >= '0' and subtree.element <= '9!
return int (subtree.element)
else : # Or is it a variable?

assert subtree.element in var dict, "Invalid variable."
return var dict[subtree.element]

Otherwise, 1it's an operator that needs to be computed.

else
Evaluate the expression in the subtrees.
lvalue = eval tree(subtree.left, var dict)
rvalue = eval tree(subtree.right, var dict)

Evaluate the operator using a helper method.
return compute op(lvalue, subtree.element, rvalue)

String Representation

« To convert an expression tree to a
string, we must perform an infix
traversal.

8 *5+9 /7 -4

10

String Representation

o The result was not correct because
required parentheses were missing.

 Can easily create a fully parenthesized

expression.
((8 * 5) + (9 / (7 - 4)))

Class activity to implement this __str__ () method.

Expression Tree Implementation

class ExpressionTree
#o...
def Dbuild string(self, tree node):
If the node is a leaf, it's an operand.
if tree node.left is None and tree node.right is None
return str(tree node.element)

Otherwise, 1it's an operator.
else
exp str = ' ('
exp str += self. build string(tree node.left)
exp str += str(tree node.element)
exp str += self. build string(tree node.right)
exp str += ")
return exp str

Expression Tree Construction

« An expression tree is constructed by
parsing the expression and examining
the tokens.

« New nodes are inserted as the tokens are
examined.

. Each set of parentheses will consist of:

- an interior node for the operator

- two children either single valued or a
subexperssion.

Expression Tree Construction

o For simplicity, we assume:

o the expression is stored in a string with no
white space.

. the expression is valid and fully
parenthesized.

. each operand will be a single-digit or
single-letter variable.

. the operators will consist of +, -, ¥, /, %

Expression Tree Construction

 Consider the expression (8*5)

« The process starts with an empty root

node set as the current node:
root

current Hb

 The action at each step depends on the
current token.

Expression Tree Construction

« When a left parenthesis is encountered:
(8%5)

o a new node is created and linked as the
left child of the current node.

root root

token: '('
current f » currengD

Expression Tree Construction

« When an operand is encountered:
(8%35)

o the data field of the current node is set to
contain the operand.

root root

‘ » current

token: '8’

current

Expression Tree Construction

« When an operator is encountered:
(8*5)

o the data field of the current node is set to the
operator.

« anew node is created and linked as the right
root root

token: '*'

current
current

19

Expression Tree Construction

« Another operand is encountered: (8*5)

root root

=

token: 'S’

current
current

Expression Tree Construction

« When a right parenthesis: (8*5)

« move up to the parent of the current node.

root
token: ')’ current

Expression Example #2

(2*7)
o Con51der another expressmn

: ff gi
gifi

® (€)) (10)

Expression Tree Implementation

class ExpressionTree
i
def Dbuild tree(self, exp str):
Build a queue containing the tokens from the expression.
expQ = Queue ()
for token in exp str
expQ.enqueue (token)

Create an empty root node.
self. exp tree = ExpTreeNode(None)

Call the recursive function to build the tree.
self. rec build tree(self. exp tree, expQ)

Expression Tree Implementation

23

class ExpressionTree

def rec build tree(self, cur node, expQ):

Extract the next token from the queue.
token = expQ.dequeue ()
See 1f the token 1is a left paren: '('

if token == "'(' :
cur node.left = ExpTreeNode(None)
build treeRec(cur node.left, expQ)
The next token will be an operator: + - / * %

cur node.data = expQ.dequeue ()

cur node.right = ExpTreeNode(None)

self. build tree rec(cur node.right, expQ)

The next token will be a), remove it.

expQ.dequeue ()

Otherwise, the token is a digit.
else

cur node.element = token

