
Binary Tree Application
Build Expression Tree

Heaps

Revised based on textbook
author’s notes.

2

String Representation

 The result was not correct because
required parentheses were missing.

 Can easily create a fully parenthesized
expression.

((8 * 5) + (9 / (7 - 4)))

Class activity to implement this __str__() method.

3

Expression Tree Implementation

class ExpressionTree :

...

def _build_string(self, tree_node):

If the node is a leaf, it's an operand.

if tree_node.left is None and tree_node.right is None :

return str(tree_node.element)

Otherwise, it's an operator.

else :

exp_str = '('

exp_str += self._build_string(tree_node.left)

exp_str += str(tree_node.element)

exp_str += self._build_string(tree_node.right)

exp_str += ')'

return exp_str

exptree.py

4

Expression Tree Construction

 An expression tree is constructed by
parsing the expression and examining
the tokens.

 New nodes are inserted as the tokens are
examined.

 Each set of parentheses will consist of:

 an interior node for the operator

 two children either single valued or a
subexperssion.

5

Expression Tree Construction

 For simplicity, we assume:

 the expression is stored in a string with no
white space.

 the expression is valid and fully
parenthesized.

 each operand will be a single-digit or
single-letter variable.

 the operators will consist of +, -, *, /, %

6

Expression Tree Construction

 Consider the expression (8*5)

 The process starts with an empty root
node set as the current node:

 The action at each step depends on the
current token.

7

Expression Tree Construction

 When a left parenthesis is encountered:
(8*5)

 a new node is created and linked as the
left child of the current node.

 descend down to the new node.

8

Expression Tree Construction

 When an operand is encountered:
(8*5)

 the data field of the current node is set to
contain the operand.

 move up to the parent of current node.

9

Expression Tree Construction

 When an operator is encountered:
(8*5)

 the data field of the current node is set to the
operator.

 a new node is created and linked as the right
child of the current node.

 descend down to the new node.

10

Expression Tree Construction

 Another operand is encountered: (8*5)

11

Expression Tree Construction

 When a right parenthesis: (8*5)

 move up to the parent of the current node.

12

Expression Example #2

 Consider another expression:
((2*7)+8)

13

Expression Tree Implementation

class ExpressionTree :

...

def _build_tree(self, exp_str):

Build a queue containing the tokens from the expression.

expQ = Queue()

for token in exp_str :

expQ.enqueue(token)

Create an empty root node.

self._exp_tree = _ExpTreeNode(None)

Call the recursive function to build the tree.

self._rec_build_tree(self._exp_tree, expQ)

exptree.py

14

Expression Tree Implementation

class ExpressionTree :

...

def _rec_build_tree(self, cur_node, expQ):

Extract the next token from the queue.

token = expQ.dequeue()

See if the token is a left paren: '('

if token == '(' :

cur_node.left = _ExpTreeNode(None)

build_treeRec(cur_node.left, expQ)

The next token will be an operator: + - / * %

cur_node.data = expQ.dequeue()

cur_node.right = _ExpTreeNode(None)

self._build_tree_rec(cur_node.right, expQ)

The next token will be a), remove it.

expQ.dequeue()

Otherwise, the token is a digit.

else :

cur_node.element = token

exptree.py

Run testexptree.py in 28_ExpressionTree/

15

Heaps

 A heap is a complete binary tree in
which the nodes are organized based
on their data values.

 heap order property – how the nodes
in a heap or arranged.

 heap shape property – as a complete
binary tree.

16

Heap property, examples

 For each non-leaf node V,

 max-heap: the value in V is greater than
the value of its two children.

 min-heap: the value in V is smaller than
the value of its two children.

17

Heap Operations

 The heap is a specialized structure
with limited operations.

 Insert an element into the heap.

 Remove the element from root node.

