
Binary Tree Application
Build Expression Tree

Heaps

Revised based on textbook
author’s notes.

2

String Representation

 The result was not correct because
required parentheses were missing.

 Can easily create a fully parenthesized
expression.

((8 * 5) + (9 / (7 - 4)))

Class activity to implement this __str__() method.

3

Expression Tree Implementation

class ExpressionTree :

...

def _build_string(self, tree_node):

If the node is a leaf, it's an operand.

if tree_node.left is None and tree_node.right is None :

return str(tree_node.element)

Otherwise, it's an operator.

else :

exp_str = '('

exp_str += self._build_string(tree_node.left)

exp_str += str(tree_node.element)

exp_str += self._build_string(tree_node.right)

exp_str += ')'

return exp_str

exptree.py

4

Expression Tree Construction

 An expression tree is constructed by
parsing the expression and examining
the tokens.

 New nodes are inserted as the tokens are
examined.

 Each set of parentheses will consist of:

 an interior node for the operator

 two children either single valued or a
subexperssion.

5

Expression Tree Construction

 For simplicity, we assume:

 the expression is stored in a string with no
white space.

 the expression is valid and fully
parenthesized.

 each operand will be a single-digit or
single-letter variable.

 the operators will consist of +, -, *, /, %

6

Expression Tree Construction

 Consider the expression (8*5)

 The process starts with an empty root
node set as the current node:

 The action at each step depends on the
current token.

7

Expression Tree Construction

 When a left parenthesis is encountered:
(8*5)

 a new node is created and linked as the
left child of the current node.

 descend down to the new node.

8

Expression Tree Construction

 When an operand is encountered:
(8*5)

 the data field of the current node is set to
contain the operand.

 move up to the parent of current node.

9

Expression Tree Construction

 When an operator is encountered:
(8*5)

 the data field of the current node is set to the
operator.

 a new node is created and linked as the right
child of the current node.

 descend down to the new node.

10

Expression Tree Construction

 Another operand is encountered: (8*5)

11

Expression Tree Construction

 When a right parenthesis: (8*5)

 move up to the parent of the current node.

12

Expression Example #2

 Consider another expression:
((2*7)+8)

13

Expression Tree Implementation

class ExpressionTree :

...

def _build_tree(self, exp_str):

Build a queue containing the tokens from the expression.

expQ = Queue()

for token in exp_str :

expQ.enqueue(token)

Create an empty root node.

self._exp_tree = _ExpTreeNode(None)

Call the recursive function to build the tree.

self._rec_build_tree(self._exp_tree, expQ)

exptree.py

14

Expression Tree Implementation

class ExpressionTree :

...

def _rec_build_tree(self, cur_node, expQ):

Extract the next token from the queue.

token = expQ.dequeue()

See if the token is a left paren: '('

if token == '(' :

cur_node.left = _ExpTreeNode(None)

build_treeRec(cur_node.left, expQ)

The next token will be an operator: + - / * %

cur_node.data = expQ.dequeue()

cur_node.right = _ExpTreeNode(None)

self._build_tree_rec(cur_node.right, expQ)

The next token will be a), remove it.

expQ.dequeue()

Otherwise, the token is a digit.

else :

cur_node.element = token

exptree.py

Run testexptree.py in 28_ExpressionTree/

15

Heaps

 A heap is a complete binary tree in
which the nodes are organized based
on their data values.

 heap order property – how the nodes
in a heap or arranged.

 heap shape property – as a complete
binary tree.

16

Heap property, examples

 For each non-leaf node V,

 max-heap: the value in V is greater than
the value of its two children.

 min-heap: the value in V is smaller than
the value of its two children.

17

Heap Operations

 The heap is a specialized structure
with limited operations.

 Insert an element into the heap.

 Remove the element from root node.

