
Binary Tree Application
Heap Sorting

Revised based on textbook
author’s notes.

2

The Heapsort

 The simplicity and efficiency of the
heap structure can be applied to the
sorting problem.

 Build a heap from a sequence of unsorted
keys.

 Extract the keys from the heap to create a
sorted sequence.

 Very efficient: O(n log n)

3

Heapsort Implementation

 A simple implementation is provided
below.

def simple_heap_sort(the_seq):

Create an array-based max-heap.

n = len(the_seq)

heap = MaxHeap(n)

Build a max-heap from the list of values.

for item in the_seq :

heap.add(item)

Extract each value from the heap and store

them back into the list.

for i in range(n-1, -1, -1) : # small to large

for I in range(n) : # large to small

theSeq[i] = heap.extract()

4

In-Place Heapsort

 The previous version required
additional storage for the heap.

 The entire process can be done in-place
within the original sequence.

 Suppose we are given the following array

5

In-Place Heapsort

 The first step is to construct a max-
heap.

 The heap nodes occupy the array from
front to back.

 We can keep the heap elements in the front
and those yet to be added at the back.

 Keep track of where the heap ends.

6

In-Place Heapsort

 The first value in the array represents a
max-heap of one element.

7

In-Place Heapsort

 The next value to be added, is the next
in the array.

 The value is copied to the root node
(position 0).

 Then sifted down.

8

In-Place Heapsort

9

In-Place Heapsort

 The next step is to extract the values
from the heap and build the sorted
sequence.

 When the root is extracted, the last child
node is copied to the root.

 The last child node is stored in the last
element of the heap.

 We can simply swap the two values.

10

In-Place Heapsort

11

In-Place Heapsort

12

In-Place Heapsort Implementation

def heapsort(the_seq):

n = len(the_seq)

Build a max-heap within the same array.

for i in range(n) :

siftUp(the_seq, i)

Extract each value and rebuild the heap.

for j in range(n-1, 0, -1) :

tmp = the_seq[j]

the_seq[j] = the_seq[0]

the_seq[0] = tmp

siftDown(the_seq, j-1, 0)

sift_up() and sift_down() are
helper functions based on those used
in the heap class.

Try heapsort.py

