
Binary Tree Application
Heap Sorting

Revised based on textbook
author’s notes.

2

The Heapsort

 The simplicity and efficiency of the
heap structure can be applied to the
sorting problem.

 Build a heap from a sequence of unsorted
keys.

 Extract the keys from the heap to create a
sorted sequence.

 Very efficient: O(n log n)

3

Heapsort Implementation

 A simple implementation is provided
below.

def simple_heap_sort(the_seq):

Create an array-based max-heap.

n = len(the_seq)

heap = MaxHeap(n)

Build a max-heap from the list of values.

for item in the_seq :

heap.add(item)

Extract each value from the heap and store

them back into the list.

for i in range(n-1, -1, -1) : # small to large

for I in range(n) : # large to small

theSeq[i] = heap.extract()

4

In-Place Heapsort

 The previous version required
additional storage for the heap.

 The entire process can be done in-place
within the original sequence.

 Suppose we are given the following array

5

In-Place Heapsort

 The first step is to construct a max-
heap.

 The heap nodes occupy the array from
front to back.

 We can keep the heap elements in the front
and those yet to be added at the back.

 Keep track of where the heap ends.

6

In-Place Heapsort

 The first value in the array represents a
max-heap of one element.

7

In-Place Heapsort

 The next value to be added, is the next
in the array.

 The value is copied to the root node
(position 0).

 Then sifted down.

8

In-Place Heapsort

9

In-Place Heapsort

 The next step is to extract the values
from the heap and build the sorted
sequence.

 When the root is extracted, the last child
node is copied to the root.

 The last child node is stored in the last
element of the heap.

 We can simply swap the two values.

10

In-Place Heapsort

11

In-Place Heapsort

12

In-Place Heapsort Implementation

def heapsort(the_seq):

n = len(the_seq)

Build a max-heap within the same array.

for i in range(n) :

siftUp(the_seq, i)

Extract each value and rebuild the heap.

for j in range(n-1, 0, -1) :

tmp = the_seq[j]

the_seq[j] = the_seq[0]

the_seq[0] = tmp

siftDown(the_seq, j-1, 0)

sift_up() and sift_down() are
helper functions based on those used
in the heap class.

Try heapsort.py

