Binary Tree Application
Heap Sorting

Revised based on textbook
author’s notes.

The Heapsort

« The simplicity and efficiency of the
heap structure can be applied to the
sorting problem.

o Build a heap from a sequence of unsorted

keys.

. Extract the keys from the heap to create a
sorted sequence.

. Very efficient: O(n log n)

Heapsort Implementation

« A simple implementation is provided
below.

def simple heap sort(the seq):
Create an array-based max-heap.
n = len(the seq)
heap = MaxHeap(n)

Build a max-heap from the 1list of values.
for item in the seq
heap.add(item)

Extract each value from the heap and store

them back into the 1ist.

for i in range(n-1, -1, -1) : # small to large

for I in range(n) : # large to small
theSeqg[i] = heap.extract ()

In-Place Heapsort

« The previous version required
additional storage for the heap.

 The entire process can be done in-place
within the original sequence.

« Suppose we are given the fol

lowing array

1)

51

2

1)

4

&

3)

8l

23|

)

[29]'

In-Place Heapsort

o The first step is to construct a max-
heap.

« The heap nodes occupy the array from
front to back.

« We can keep the heap elements in the front
and those yet to be added at the back.

» Keep track of where the heap ends.

In-Place Heapsort

o The first value in the array represents a
max-heap ot one element.

10191| 2 (18| 4 |31|13 | 5 (23|64 |29

In-Place Heapsort

« The next value to be added, is the next
in the array.

 The value is copied to the root node
(position 0).
 Then sifted down.

°01110| 2 |18| 4 |31|13| 5 |23|64 |29

In-Place Heapsort

i S i

[51]10] 2 18] 4 |31|13| |23|64[29] [51]18]| 2 [10] 4 [31]13] 5 |23|64|20| [51|18]2 [10] 4 [31]13] 5 [23]64 29|

|51]23]31]18] 4 | 2[13] 5 [10]64]20| [64]51[31]18]23] 2 [13] 5 [10] 4 [20| |64]51[31[18]29] 2 [13] 5 [10] 4 |23]

In-Place Heapsort

« The next step is to extract the values
from the heap and build the sorted
sequence.

« When the root is extracted, the last child
node is copied to the root.

« The last child node is stored in the last
element of the heap.

« We can simply swap the two values.

10

In-Place Heapsort

31

29

13

10

23

(a) the original max-heap.

23

51

31

29

13

10

4

64

(b) swap the first and last items in the heap.

23

51

31

29

13

5

10

4

64

(c) remove the last item from the heap.

29

31

18

23

13

5

10

4

64

(d) sift the root value down the tree.

In-Place Heapsort

|5421013182329315164 |4251013182329315164 |24510131823293151

In-Place Heapsort Implementation

sift up() and sift down () are
helper functions based on those used
in the heap class.
def heapsort(the seq):
n = len(the seq)
Build a max-heap within the same array.

for 1 in range(n)
siftUp(the seq, 1)

Extract each value and rebuild the heap.

for ; in range(n-1, 0, -1)
tmp = the seq[7j]
the seq[j] = the seqgl0]
the seq[0] = tmp

siftDown (the seq, j-1, 0)

Try heapsort.py

