
AVL Tree
A Balanced Binary Search Tree

Revised based on textbook author’s notes and Professor Booth’s notes.

How bad!?!?
• Balance – the height of left and right subtree approximately equal

• Our standard binary trees can be bad!
• What if we made a search tree from an ordered list?

AVL Tree Background

• Developed by G.M. Adelson-Velskii and E.M. Landis in 1962

• Goal: try to keep the tree balanced during insertion and removal.

• Ensures height never exceeds 1.44 log n

• Worst case of tree height O(log n)

• An AVL tree is a binary search tree that the height of two children
differ by no more than one.

These are AVL trees, ‘=‘ denotes children are
of equal height, ‘<‘ or ‘>’ differ by one.

=

The tree on the right is not an
AVL tree, after the node with
28 is inserted. The balance
signs along the branch where
28 is inserted have to be
revised. And the tree has to be
re-balanced if to maintain it as
an AVL tree.

Balance Factor
• So what states of balance exist?

• Left-high ‘>’

• Equal-high ‘=‘

• Right-high ‘<‘

=

How do we maintain balance?

• Well that is the million dollar question!

• We will use rotations!

• All rotations happen at a fixed point

• This fixed point is the pivot node
• Not really the instance of the node, but the location of the node!

Rotations

• Right Rotation
• Pivot Q

• Q becomes the parent of B

• P becomes the parent of Q

• Left Rotation
• Pivot P

• P becomes the parent of B

• Q becomes the parent of P

Rotations

Insertion

• Now we have our weapon (rotations) and we will use it

• Step 1. Find a place to add the element as a leaf node
• Same as BST

• Step 2. Rebalance
• Four Cases to consider

Case 1.
• Add to the left side of a subtree that is already left-high

Insert 28.
1. Walk down to find a place to insert 28.
2. Walk back up the path and found a

node with left-high and we added to
the left! Now very left-high! We need
to fix this!

3. Fix?

Case 1
• How do we fix the balance?

• At the node with left-high (P) on the return path,….

• What do we know about the subtree P?
• We know the left side subtree height is now 2 nodes higher than the height of

the right subtree

• We know if we could rotate one node for the left into the right the subtrees
will be equal

• Therefore, rotate right!

Easy Example (Case 1)

More Complex Example (Case 1)

50 – Left-heavy

Case 2

• Add node as a right or left leaf node of a path where you are right of
your grandparent, C, (equal-high) and left of your great grandparent,
P, (left-high).

Insert 35.
1. Walk down to find a place to insert 35.
2. Walk back up the path to 30, make G

right-high ‘<‘
3. Walk back up the path to 25, make C

right-high ‘<‘
4. Walk back up the path to 60, Oh no!

Was already left-high and now left is
even more taller! Fix this!

5. Fix?

Case 2
• How do we fix this imbalance?

• At node with left-high (P)

• Would a simple rotation help?
• Left rotation around P – would make the left branch of P

more taller (more ‘left-high’)!

• A simple right rotation around P – would make C the new
root, P the right child of C, G the left child of P, s1 the left
child of C. The tree is not balanced as the right-height(C)=
height(P)+1 = height(G)+h+1 >> left-height(C) == h

• What if we do a left rotation on the left child of P
(node C) first, followed by a right rotation of P?

• Result
• 1. Left rotation on P.left (C in this case)

• 2. Right rotation on P

1

2

Example (Case 2)

35

Case 3
• Mirror image of Case 1

• P is right-high

• New key is inserted in right subtree of C

• Shown below is ‘before’ and ‘after’ balancing, but after inseration!

Case 4
• Mirror image of Case 2

• P is right-high

• G is the left child of C instead of the right

• Right child of C is S4

S4

Building AVL Tree [60,25,35,100,17,80]

Building AVL Tree [60,25,35,100,17,80]

AVL Removal
• First remove as we do in BST

• Rebalance

