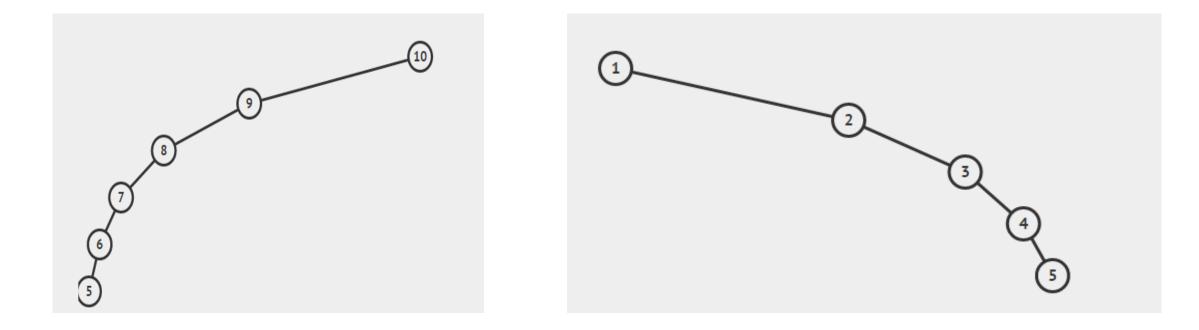
# AVL Tree A Balanced Binary Search Tree

Revised based on textbook author's notes and Professor Booth's notes.

# How bad!?!?

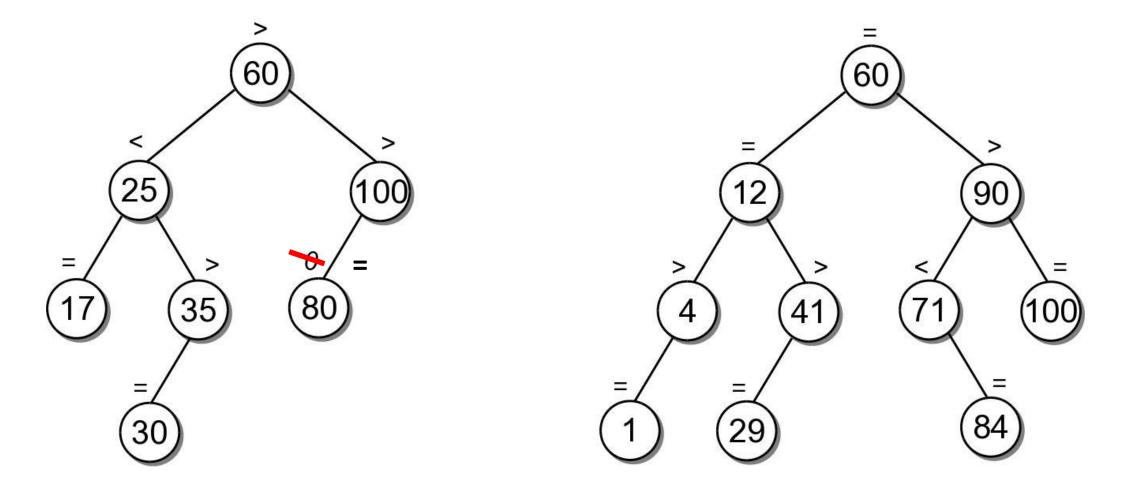
- Balance the height of left and right subtree approximately equal
- Our standard binary trees can be bad!
  - What if we made a search tree from an ordered list?



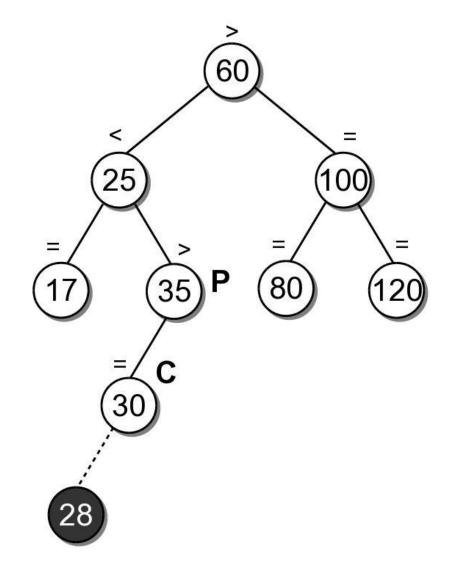
# AVL Tree Background

- Developed by G.M. Adelson-Velskii and E.M. Landis in 1962
- Goal: try to keep the tree balanced during insertion and removal.
- Ensures height never exceeds 1.44 log n
- Worst case of tree height O(log n)
- An *AVL tree* is a binary search tree that the height of two children differ by no more than one.

These are AVL trees, '=' denotes children are of equal height, '<' or '>' differ by one.

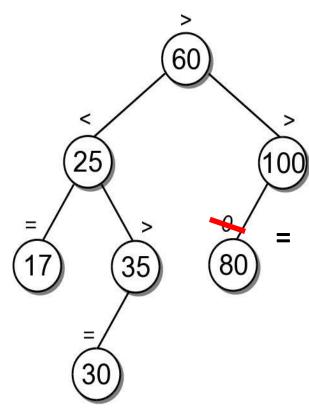


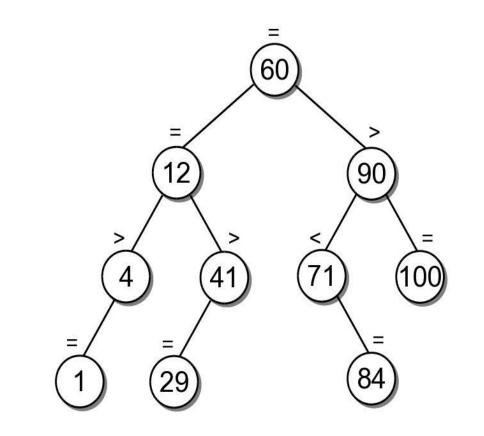
The tree on the right is **not** an AVL tree, after the node with 28 is inserted. The balance signs along the branch where 28 is inserted have to be revised. And the tree has to be re-balanced if to maintain it as an AVL tree.



#### **Balance Factor**

- So what states of balance exist?
  - Left-high '>'
  - Equal-high '='
  - Right-high '<'





# How do we maintain balance?

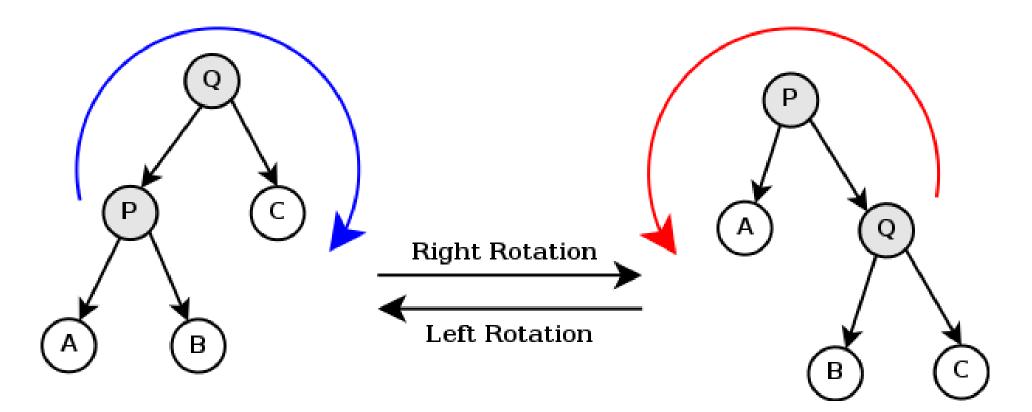
- Well that is the million dollar question!
- We will use *rotations*!
- All rotations happen at a fixed point
- This fixed point is the *pivot node* 
  - Not really the instance of the node, but the location of the node!



### Rotations

- Right Rotation
  - Pivot Q
  - Q becomes the parent of B
  - P becomes the parent of Q

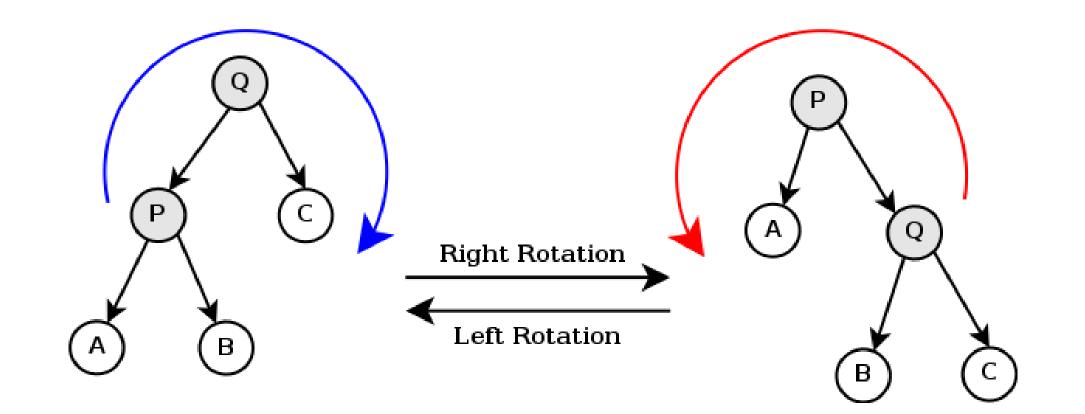
- Left Rotation
  - Pivot P
  - P becomes the parent of B
  - Q becomes the parent of P



### Rotations

| <pre>def rotate_right( pivot ):</pre> |   |      |   |
|---------------------------------------|---|------|---|
| # pivot == Q                          |   |      |   |
| X = pivot.left                        | # | Save | Ρ |
| pivot.left = X.right                  | # | Move | В |
| X.riqht = pivot                       | # | Move | Q |
| return X                              |   |      |   |

```
def rotate left( pivot ):
# pivot == P
X = pivot.right  # Save Q
pivot.right = X.left  # Move B
X.left = pivot  # Move P
return X
```

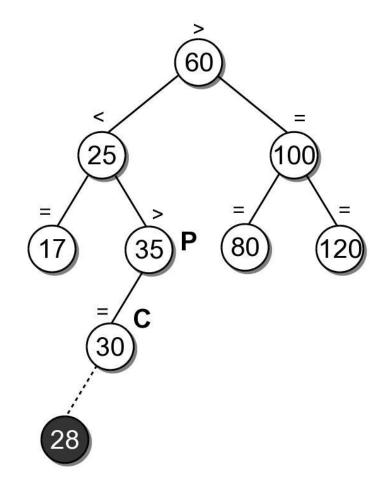


### Insertion

- Now we have our weapon (rotations) and we will use it
- Step 1. Find a place to add the element as a leaf node
  - Same as BST
- Step 2. Rebalance
  - Four Cases to consider

### Case 1.

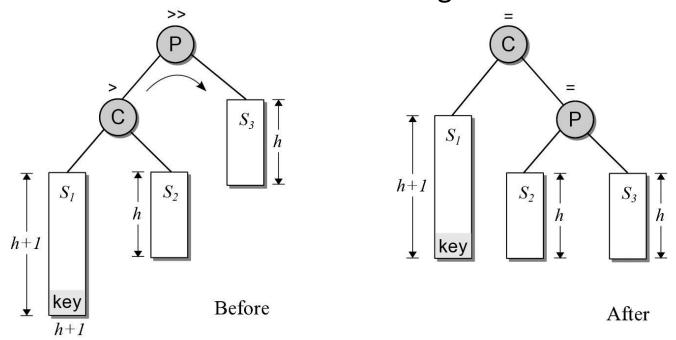
• Add to the left side of a subtree that is already left-high



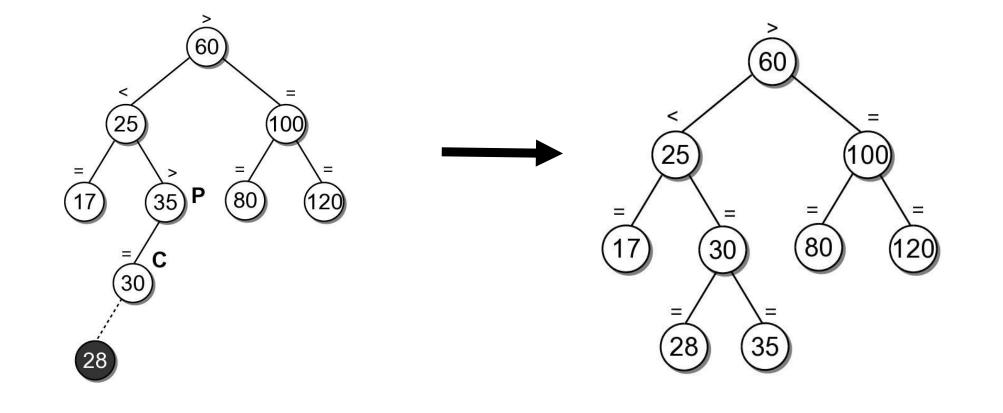
Insert 28.

- 1. Walk down to find a place to insert 28.
- 2. Walk back up the path and found a node with left-high and we added to the left! Now very left-high! We need to fix this!
- 3. Fix?

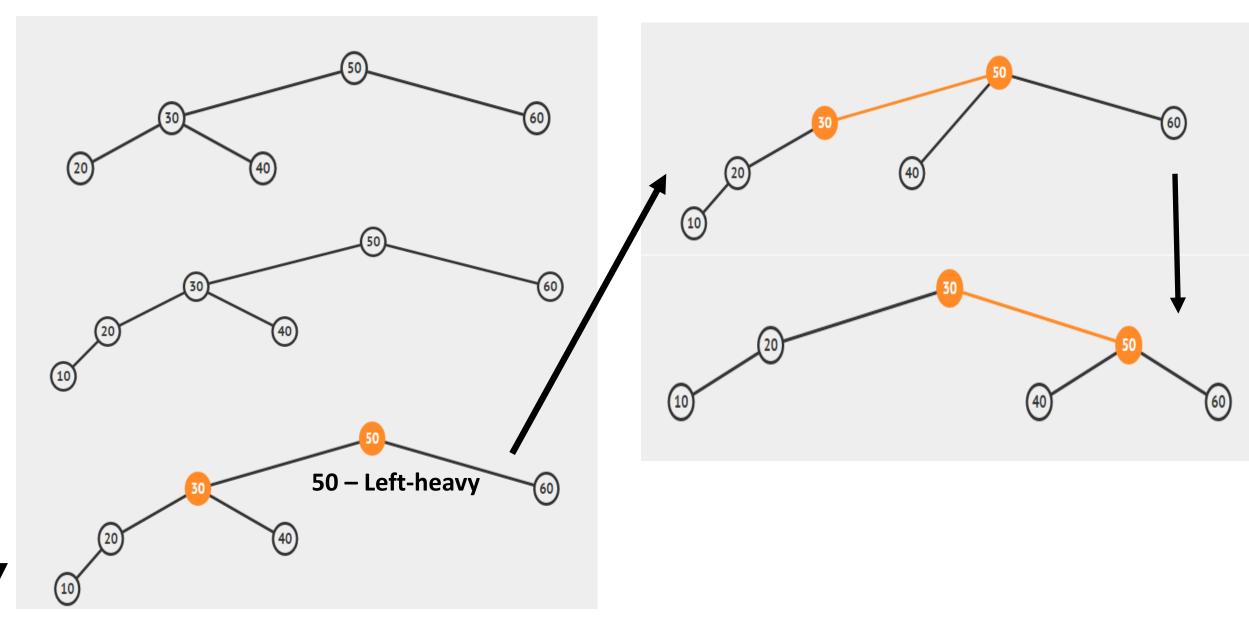
- How do we fix the balance?
- At the node with left-high (P) on the return path,....
- What do we know about the subtree P?
  - We know the left side subtree height is now 2 nodes higher than the height of the right subtree
  - We know if we could rotate one node for the left into the right the subtrees will be equal
- Therefore, rotate right!



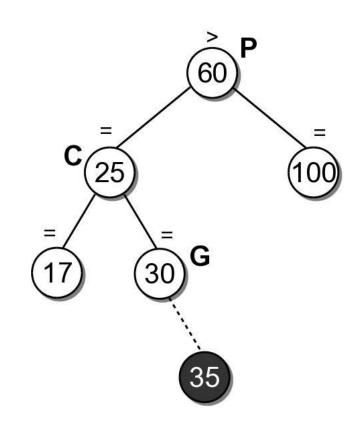
### Easy Example (Case 1)



#### More Complex Example (Case 1)



 Add node as a right or left leaf node of a path where you are right of your grandparent, C, (equal-high) and left of your great grandparent, P, (left-high).



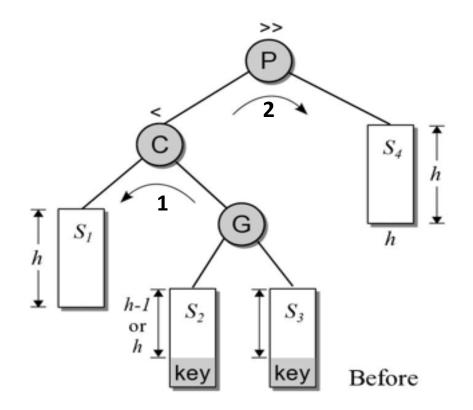
Insert 35.

- 1. Walk down to find a place to insert 35.
- 2. Walk back up the path to 30, make G right-high '<'
- 3. Walk back up the path to 25, make C right-high '<'
- 4. Walk back up the path to 60, Oh no! Was already left-high and now left is even more taller! Fix this!
- 5. Fix?

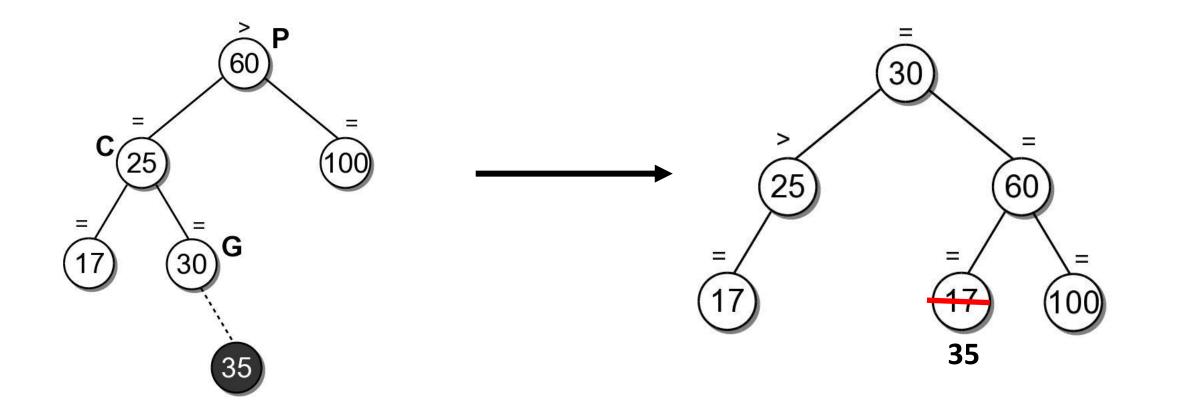
- How do we fix this imbalance?
- At node with left-high (P)
- Would a simple rotation help?
  - Left rotation around P would make the left branch of P more taller (more 'left-high')!
  - A simple right rotation around P would make C the new root, P the right child of C, G the left child of P, s1 the left child of C. The tree is not balanced as the right-height(C)= height(P)+1 = height(G)+h+1 >> left-height(C) == h
- What if we do a left rotation on the left child of P (node C) first, followed by a right rotation of P?

• Result

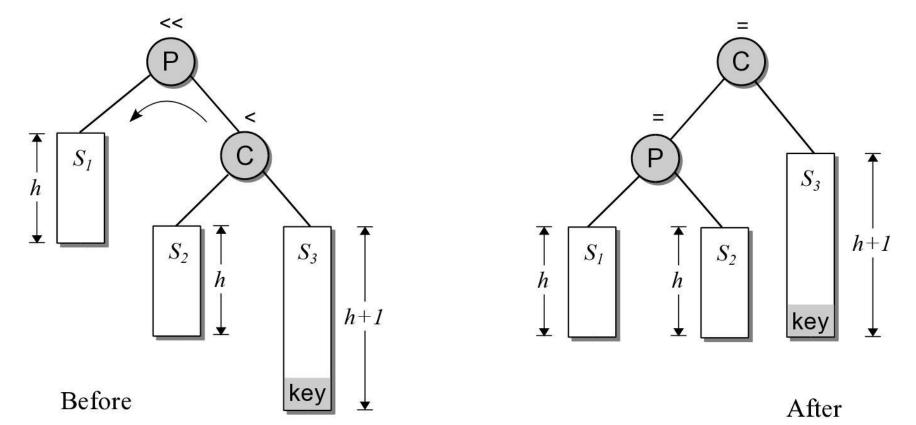
- 1. Left rotation on P.left (C in this case)
- 2. Right rotation on P



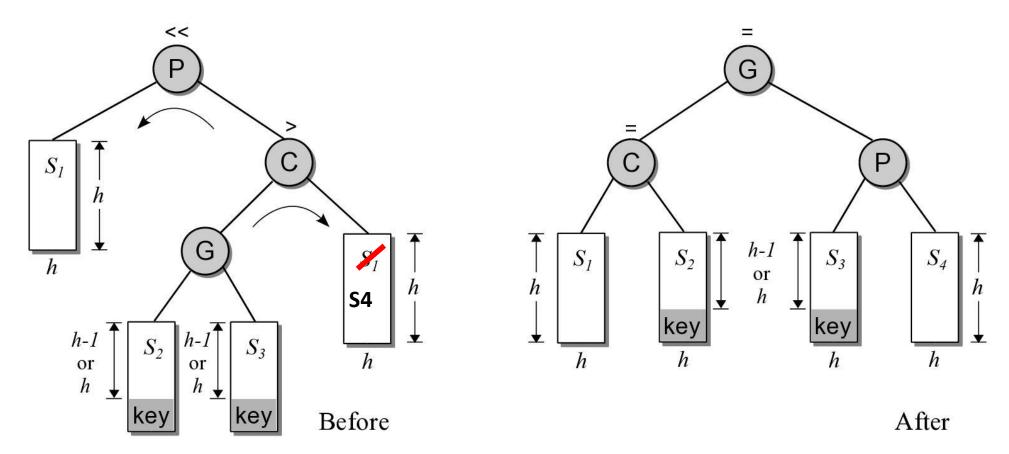
Example (Case 2)

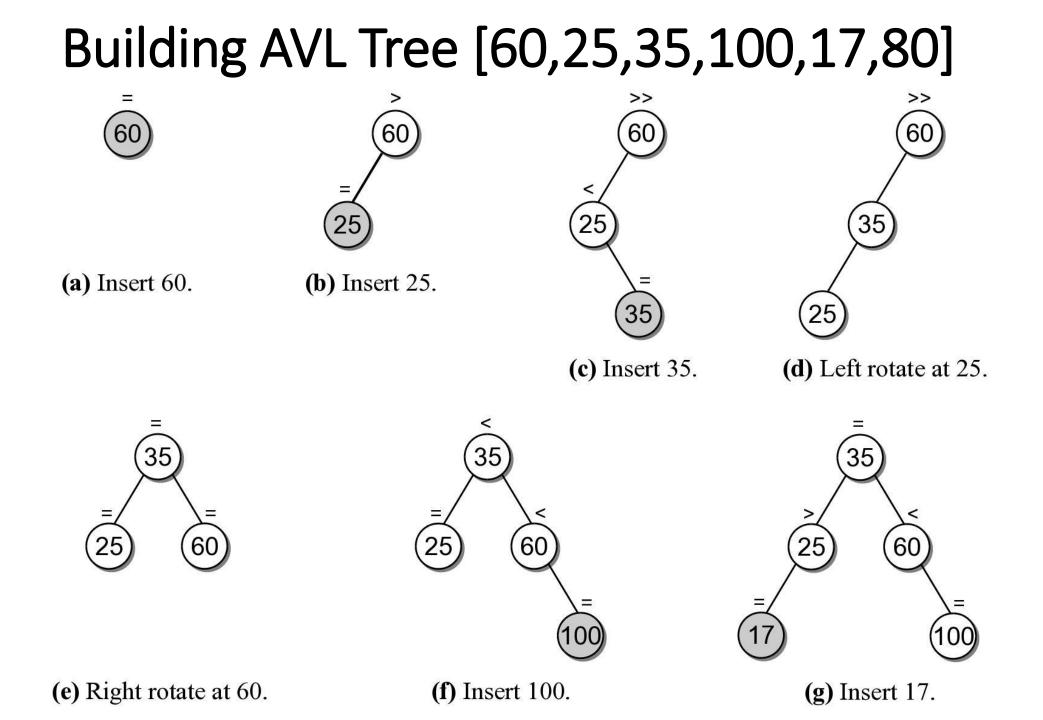


- Mirror image of Case 1
- P is right-high
- New key is inserted in right subtree of C
- Shown below is 'before' and 'after' balancing, but after inseration!

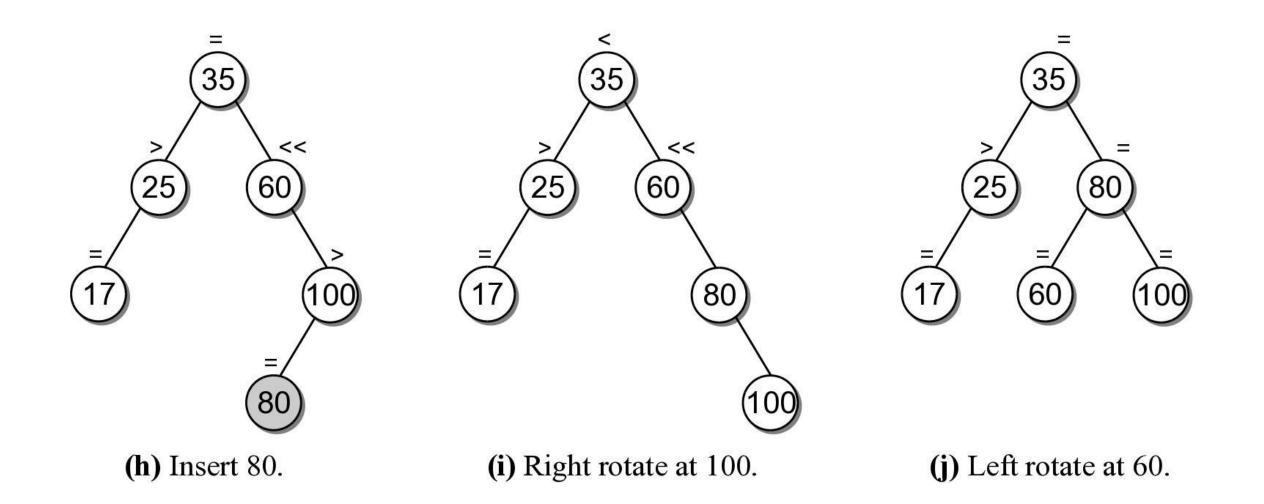


- Mirror image of Case 2
- P is right-high
- G is the left child of C instead of the right
- Right child of C is S4





## Building AVL Tree [60,25,35,100,17,80]



# **AVL Removal**

- First remove as we do in BST
- Rebalance

