
Hash Maps
Introduction

Revised based on textbook
author’s notes.

2

Introduction

 When discussing search we saw:

 linear search – O(n)

 binary search – O(log n)

 Can we improve the search operation
to achieve better than O(log n) time?

3

Comparison-Based Searches

 To locate an item, the target search key
has to be compared against the other
keys in the collection.

 O(log n) is the best that can be achieved.

 We must use a different technique if we
want to improve the search time.

4

Hashing

 The process of mapping a search key
to a limited range of array indices.

 The goal is to provide direct access to the
keys.

 hash table – the array containing the keys.

 hash function – maps a key to an array
index.

5

Hashing Example

 Suppose we have a list of popular
fruits, we want to find if a particular
type of fruit is in our inventory.

 Apple, Banana, Grape, Orange, Pear,
Pineapple, Strawberry.

 We could use an array of 26 elements,
each is index by the first letter of the
fruit name, assuming no repetition. We
can simply check for fruit[name[0]]!

6

Hashing Example

 Suppose we have the following set of
keys

a hash table, T, with M = 13 elements.

 We can define a simple hash function
h()

 h(765) -> 11, h(431) -> 2, …

765, 431, 96, 142, 579, 226, 903, 388

h(key) = key % M

7

Adding Keys

 To add a key to the hash table:
 Apply the hash function to determine the

array index in which the key should be
stored.
h(765) => 11

h(431) => 2

h(96) => 5

h(142) => 12

h(579) => 7

 Store the key in the given slot.

8

Collisions

 What happens when we attempt to
add key 226?

h(226) => 5

 collision – when two or more keys
map to the same hash location.

Resolving collisions

• There are in general two approaches to
resolve collisions,

– Closed hashing: find a spot within the hash
table to store the new element

– Open hashing: create a structure, e.g., a list, or
a tree, in the hashed spot to store the elements
that have the same hashing key

• We first concentrate on closed hashing.

10

Closed hashing: probing

 If two keys map to the same table
entry, we must resolve the collision to
find another available slot.

 linear probe – simplest approach which
examines the table entries in sequential
order.

11

Probing

 Consider adding key 903 to our hash
table.

h(903) => 6

12

Probing

 If the end of the array is reached
during the probe, it wraps around to
the first entry and continues.

 Consider adding key 388 to our hash
table.
h(388) => 11

13

Searching

 Searching a hash table for a specific
key is very similar to the add
operation.

 Target key is mapped to an initial slot.

 See if the slot contains the target.

 Otherwise, apply the same probe used to
add keys to locate the target.

 Example: search for key 903.

14

Searching

 What if the key is not in the hash table?

 The probe continues until either:

 a null reference is reached, or

 all slots have been examined.

15

Deleting Keys

 Deleting a key from a hash table is a bit
more complicated than adding keys.

 We can search for the key to be deleted.

 But we cannot simply remove it by setting
the entry to None.

16

Incorrect Deletion

 Suppose we simply remove key 226
from slot 6.

 What happens if we search for key
903?

17

Correct Deletion

 We use a special flag to indicate the
entry is now empty, but was
previously occupied.

 When searching a hash table, the probe
must continue past the slot(s) with the
special flag.

18

Clustering

 The grouping of keys in a common
area.
 As more keys are added to the hash table,

more collisions are likely to occur.

 Clusters begin to form due to the probing
required to find an empty slot.

 As a cluster grows larger, more collisions
will occur.

 primary clustering – clustering around
the original hash position.

19

Probe Sequence

 The order in which the hash entries are
visited during a probe.

 The linear probe steps through the entries
in sequential order.

 The next array slot can be represented as

 where
 i is the ith probe.

 home is the home position

slot = (home + i) % M

20

Modified Linear Probe

 We can improve the linear probe by
changing the step size to some fixed
constant.

 Suppose we set c = 3 to build the hash
table. h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 1

slot = (home + i * c) % M

21

Quadratic Probing
 A better approach for reducing

primary clustering.

 Increases the distance between each
probe in the sequence.

 Example:
h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 6

h(96) => 5 h(903) => 6 => 7 => 10

h(142) => 12 h(388) => 11 => 12 => 2 => 7 => 1

slot = (home + i**2) % M

Computations from last slide

• Quadratic probing
h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 6

h(96) => 5 h(903) => 6 => 7 => 10

h(142) => 12 h(388) => 11 => 12 => 2 => 7 => 1

h(226) => 5, second (5 + 12) % M => 6

h(903) => 6, second (6 + 12) % M => 7, third (6 + 22) % M => 10

h(388) => 11, second (11 + 12) % M => 12,

third (11 + 22) % M => 2, fourth(11 + 32) % M => 7,

fifth (11 + 42) % M => 1

23

Quadratic Probing
 Reduces the number of collisions.

 Introduces the problem of secondary
clustering.

 When two keys map to the same entry
and have the same probe sequence.

 Example: add key 648

 hashes to entry 11

 follows the same sequence as key 388

24

Double Hashing

 When a collision occurs, a second hash
function is used to build a probe
sequence.

 Step size remains a constant throughout
the probe.

 Multiple keys that have the same home
position, will have different probe
sequences.

slot = (home + i * hp(key)) % M

25

Double Hashing

 A simple choice for the second hash
function.

 Example: let P = 8

hp(key) = 1 + key % P

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 3

Computations from last slide

• Double hashing
– slot = (home + i * hp(key)) % M, e.g., M==13

– hp(key) = 1 + key % P, e.g., P == 8

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 3

h(226) => 5, double hashing [(5+1*(1+226))%P] % M => 8

h(388) => 11, double hasing [(11+1*(1+388)%P] % M => 3

