Hash Maps
Introduction

Revised based on textbook
author’s notes.



Introduction

« When discussing search we saw:
o linear search - O(n)
 binary search — O(logn)

« Can we improve the search operation
to achieve better than O( log n ) time?



Comparison-Based Searches

o To locate an item, the target search key
has to be compared against the other
keys in the collection.

« O(logn) is the best that can be achieved.

« We must use a different technique if we
want to improve the search time.



Hashing

« The process of mapping a search key
to a limited range of array indices.

 The goal is to provide direct access to the
keys.

o hash table — the array containing the keys.

. hash function — maps a key to an array
index.



Hashing Example

« Suppose we have a list of popular
fruits, we want to find if a particular
type of fruit is in our inventory.

. Apple, Banana, Grape, Orange, Pear,
Pineapple, Strawberry.

« We could use an array of 26 elements,
each is index by the first letter of the
fruit name, assuming no repetition. We
can simply check for fruit[name[0]]!



Hashing Example

« Suppose we have the following set of
keys

765, 431, 90, 142, 579, 226, 903, 388

a hash table, T, with M =13 elements.

« We can define a simple hash function
h() h(key) = key % M

. h(765) > 11, h(431) > 2, ...




Adding Keys

 To add a key to the hash table:

« Apply the hash function to determine the
array index in which the key should be

stored.

h(765) => 11
h(431) => 2
h(96) => 5

h(l142) => 12
h(579) => 7

o Store the key in the given slot.
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Collisions

« What happens when we attempt to

add key 2267
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Resolving collisions

* There are in general two approaches to
resolve collisions,

— Closed hashing: find a spot within the hash
table to store the new element

— Open hashing: create a structure, e.g., a list, or
a tree, in the hashed spot to store the elements
that have the same hashing key

* We first concentrate on closed hashing.



Closed hashing: probing

o If two keys map to the same table
entry, we must resolve the collision to
find another available slot.

« linear probe — simplest approach which
examines the table entries in sequential

order.
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Probing

« Consider adding key 903 to our hash
table.
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Probing

o If the end of the array is reached
during the probe, it wraps around to
the first entry and continues.

« Consider adding key 388 to our hash
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Searching

o Searching a hash table for a specific

key is very similar to the add
operation.

o Target key is mapped to an initial slot.

o See if the slot contains the target.

» Otherwise, apply the same probe used to

add keys to locate the target.
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Searching

. What56if the kev is not in the hash table?
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« The probe continues until either:
« a null reference is reached, or
« all slots have been examined.



Deleting Keys

o Deleting a key from a hash table is a bit
more complicated than adding keys.
« We can search for the key to be deleted.

« But we cannot simply remove it by setting
the entry to None.



Incorrect Deletion

» Suppose we simply remove key 226
from slot 6.
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Correct Deletion

« We use a special flag to indicate the
entry is now empty, but was
previously occupied.
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« When searching a hash table, the probe
must continue past the slot(s) with the
special flag.
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Clustering

« The grouping of keys in a common
area.

« Asmore keys are added to the hash table,
more collisions are likely to occur.

o Clusters begin to form due to the probing
required to find an empty slot.

 As a cluster grows larger, more collisions
will occur.

. primary clustering — clustering around
the original hash position.



Probe Sequence

o The order in which the hash entries are
visited during a probe.

 The linear probe steps through the entries
in sequential order.

 The next array slot can be represented as

slot = (home + 1) % M
« where
- i is the i" probe.
- home is the home position



Modified Linear Probe

« We can improve the linear probe by
changing the step size to some fixed
constant.

slot = (home + 1 * ¢c) S M

« Suppose we set ¢ = 3 to build the hash
table.

h(765) => 11 h(579) => 7
h(431) => 2 h(226) => 5 => 8
h(96) => 5 h(903) => ©
h(142) => 12 h(388) => 11 => 1
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Quadratic Probing

A better approach for reducing
primary clustering.

slot

(home + 1i**2)
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o Increases the distance between each
probe in the sequence.

« Example:

(765) => 11 h(579) > 7]
431) => 2 h(226) => 5 => 6
6) => 5 h(903) => o => 7 => 10
142) => 12 h (388) > 11 => 12 => 2 => 7 =>
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Computations from last slide

* Quadratic probing

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 6

h(96) => 5 h(903) => o6 => 7 => 10

h(142) => 12 h(388) => 11 => 12 => 2 => "7 =>1
h(226) => 5, second (5 + 1%2) $ M => 6
h (903) => 6, second (6 + 1%) $ M => 7, third (6 + 22) $ M => 10
h (388) => 11, second (11 + 12%) $ M => 12,

third (11 + 22) $ M => 2, fourth(ll + 3%) $ M => 7,

fifth (11 + 42) $ M => 1
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Quadratic Probing

o Reduces the number of collisions.

o Introduces the problem of secondary
clustering.

« When two keys map to the same entry
and have the same probe sequence.

« Example: add key 648

o hashes to entry 11

. follows the same sequence as key 388
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Double Hashing

« When a collision occurs, a second hash
function is used to build a probe

sequence.
slot = (home + 1 * hp(key)) % M

o Step size remains a constant throughout
the probe.

« Multiple keys that have the same home
position, will have different probe
sequences.



Double Hashing

A simple choice for the second hash

function.
hp(key) = 1 + key $ P

« Example: let P =38

h(765) => 11 h(579) => 7
h(431) => 2 h(226) => 5 => 8
h(96) => 5 h(903) => ©
h(142) => 12 h(388) => 11 => 3
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Computations from last slide

* Double hashing

— slot = (home + i * hp(key)) $ M, e.g., M==13

— hp(key) =1 + key 5 P, e.g., P ==
h(765) => 11 h(579) => 7
h(431) => 2 h(226) => 5 => 8
h(96) => 5 h(903) => 6
h(142) => 12 h(388) => 11 => 3

h(226) => 5, double hashing [(5+1*(1+226))%P] $ M
h(388) => 11, double hasing [(11+1*(1+388)%P] S M => 3
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