
Hash Maps
Introduction

Revised based on textbook
author’s notes.

2

Introduction

 When discussing search we saw:

 linear search – O(n)

 binary search – O(log n)

 Can we improve the search operation
to achieve better than O(log n) time?

3

Comparison-Based Searches

 To locate an item, the target search key
has to be compared against the other
keys in the collection.

 O(log n) is the best that can be achieved.

 We must use a different technique if we
want to improve the search time.

4

Hashing

 The process of mapping a search key
to a limited range of array indices.

 The goal is to provide direct access to the
keys.

 hash table – the array containing the keys.

 hash function – maps a key to an array
index.

5

Hashing Example

 Suppose we have a list of popular
fruits, we want to find if a particular
type of fruit is in our inventory.

 Apple, Banana, Grape, Orange, Pear,
Pineapple, Strawberry.

 We could use an array of 26 elements,
each is index by the first letter of the
fruit name, assuming no repetition. We
can simply check for fruit[name[0]]!

6

Hashing Example

 Suppose we have the following set of
keys

a hash table, T, with M = 13 elements.

 We can define a simple hash function
h()

 h(765) -> 11, h(431) -> 2, …

765, 431, 96, 142, 579, 226, 903, 388

h(key) = key % M

7

Adding Keys

 To add a key to the hash table:
 Apply the hash function to determine the

array index in which the key should be
stored.
h(765) => 11

h(431) => 2

h(96) => 5

h(142) => 12

h(579) => 7

 Store the key in the given slot.

8

Collisions

 What happens when we attempt to
add key 226?

h(226) => 5

 collision – when two or more keys
map to the same hash location.

Resolving collisions

• There are in general two approaches to
resolve collisions,

– Closed hashing: find a spot within the hash
table to store the new element

– Open hashing: create a structure, e.g., a list, or
a tree, in the hashed spot to store the elements
that have the same hashing key

• We first concentrate on closed hashing.

10

Closed hashing: probing

 If two keys map to the same table
entry, we must resolve the collision to
find another available slot.

 linear probe – simplest approach which
examines the table entries in sequential
order.

11

Probing

 Consider adding key 903 to our hash
table.

h(903) => 6

12

Probing

 If the end of the array is reached
during the probe, it wraps around to
the first entry and continues.

 Consider adding key 388 to our hash
table.
h(388) => 11

13

Searching

 Searching a hash table for a specific
key is very similar to the add
operation.

 Target key is mapped to an initial slot.

 See if the slot contains the target.

 Otherwise, apply the same probe used to
add keys to locate the target.

 Example: search for key 903.

14

Searching

 What if the key is not in the hash table?

 The probe continues until either:

 a null reference is reached, or

 all slots have been examined.

15

Deleting Keys

 Deleting a key from a hash table is a bit
more complicated than adding keys.

 We can search for the key to be deleted.

 But we cannot simply remove it by setting
the entry to None.

16

Incorrect Deletion

 Suppose we simply remove key 226
from slot 6.

 What happens if we search for key
903?

17

Correct Deletion

 We use a special flag to indicate the
entry is now empty, but was
previously occupied.

 When searching a hash table, the probe
must continue past the slot(s) with the
special flag.

18

Clustering

 The grouping of keys in a common
area.
 As more keys are added to the hash table,

more collisions are likely to occur.

 Clusters begin to form due to the probing
required to find an empty slot.

 As a cluster grows larger, more collisions
will occur.

 primary clustering – clustering around
the original hash position.

19

Probe Sequence

 The order in which the hash entries are
visited during a probe.

 The linear probe steps through the entries
in sequential order.

 The next array slot can be represented as

 where
 i is the ith probe.

 home is the home position

slot = (home + i) % M

20

Modified Linear Probe

 We can improve the linear probe by
changing the step size to some fixed
constant.

 Suppose we set c = 3 to build the hash
table. h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 1

slot = (home + i * c) % M

21

Quadratic Probing
 A better approach for reducing

primary clustering.

 Increases the distance between each
probe in the sequence.

 Example:
h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 6

h(96) => 5 h(903) => 6 => 7 => 10

h(142) => 12 h(388) => 11 => 12 => 2 => 7 => 1

slot = (home + i**2) % M

Computations from last slide

• Quadratic probing
h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 6

h(96) => 5 h(903) => 6 => 7 => 10

h(142) => 12 h(388) => 11 => 12 => 2 => 7 => 1

h(226) => 5, second (5 + 12) % M => 6

h(903) => 6, second (6 + 12) % M => 7, third (6 + 22) % M => 10

h(388) => 11, second (11 + 12) % M => 12,

third (11 + 22) % M => 2, fourth(11 + 32) % M => 7,

fifth (11 + 42) % M => 1

23

Quadratic Probing
 Reduces the number of collisions.

 Introduces the problem of secondary
clustering.

 When two keys map to the same entry
and have the same probe sequence.

 Example: add key 648

 hashes to entry 11

 follows the same sequence as key 388

24

Double Hashing

 When a collision occurs, a second hash
function is used to build a probe
sequence.

 Step size remains a constant throughout
the probe.

 Multiple keys that have the same home
position, will have different probe
sequences.

slot = (home + i * hp(key)) % M

25

Double Hashing

 A simple choice for the second hash
function.

 Example: let P = 8

hp(key) = 1 + key % P

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 3

Computations from last slide

• Double hashing
– slot = (home + i * hp(key)) % M, e.g., M==13

– hp(key) = 1 + key % P, e.g., P == 8

h(765) => 11 h(579) => 7

h(431) => 2 h(226) => 5 => 8

h(96) => 5 h(903) => 6

h(142) => 12 h(388) => 11 => 3

h(226) => 5, double hashing [(5+1*(1+226))%P] % M => 8

h(388) => 11, double hasing [(11+1*(1+388)%P] % M => 3

