
Hash Maps
Implementation and

Applications
Revised based on textbook

author’s notes.

2

Table Size

 How big should a hash table be?
 If we know the max number of keys.

− create it big enough to hold all of the keys.
 In most instances, we don't know the

number of keys.
 Most probing techniques work best

when the table size is a prime number.

3

Rehashing
 We can start with a small table and

expand it as needed.
 Similar to the approach used with the

array.
 load factor – the ratio between the

number of keys and the size of the
table.
 A hash table should be expanded before

the load factor reaches 80%.

4

Rehashing Example
 After creating a larger array for the

table, we can not simply copy the
original keys to the new table.

 We must rebuild or rehash the entire
table. h(765) => 0 h(579) => 1

h(431) => 6 h(226) => 5
h(96) => 11 h(903) => 2
h(142) => 6 => 7 h(388) => 14

5

Expansion Size

 Size of the expansion depends on the
application.

 Good rule of thumb is to at least
double its size.

 Two common approaches:
 double the size of the table, then search

for the first larger prime number.
 double the size of the table and add one to

ensure M is odd.

6

Efficiency Analysis

 Depends on:
 the hash function
 size of the table
 type of collision resolution probe

 Once an empty slot is located, adding or
deleting a key can be done in O(1) time.

 The time required to perform the search
is the main contributor to the overall time
of all ops.

7

Efficiency Analysis

 Best case: O(1)
 The key maps directly to the correct entry.
 There are no collisions.

 Worst case: O(m)
 Assume there are n keys stored in a table of

size m.
 The probe has to visit every entry in the

table.

8

Efficiency Analysis
 While hashing appears to be no better than a basic

linear search or binary search in worst case, hashing
is very efficient in the average case with load factor <
0.8. (Table shows the data for M == 13.)

 Remember linear search O(n), binary search O(log n)
and log 13 is about 3.7.

Load Factor 0.25 0.5 0.67 0.8 0.99

Successful search:

Linear probe 1.17 1.50 2.02 3.00 50.50

Quadratic probe 1.66 2.00 2.39 2.90 6.71

Unsuccessful search:

Linear probe 1.39 2.50 5.09 13.00 5000.50

Quadratic probe 1.33 2.00 3.03 5.00 100.00

9

Hash Functions

 The efficiency of hashing depends in
large part on the selection of a good
hash function.
 A “perfect” function will map every key

to a different table entry.
− This is seldom achieved except in special

cases.
 A “good” hash function distributes the

keys evenly across the range of table
entries.

10

Function Guidelines

 Important guidelines to consider in
designing a hash function.
 Computation should be simple.
 Resulting index can not be random.
 Every part of a multi-part key should

contribute.
 Table size should be a prime number.

11

Common Hash Functions

 Division – simplest for integer values.

 Truncation – some columns in the key
are ignored.
 Example: assume keys composed of 7 digits.
 Use the 1st, 3rd, 6th digits to form an index (M

= 1000).

h(key) = key % M

12

Common Hash Functions

 Folding – key is split into multiple parts
then combined into a single value.
 Given the key value 4873152, split it into

three smaller values (48, 73, 152).
 Add the values together and use with

division.

13

Hashing Strings
 Strings can also be stored in a hash table.

 Convert to an integer value that can be used
with the division or truncation methods.

 Simplest approach: sum the ASCII values
of individual characters.
 Short strings will not hash to larger table

entries.
 Better approach: use a polynomial.

aS 0

14

The HashMap ADT

 Hash tables are commonly used to
implement a map or dictionary.
 Same as the Map ADT.
 Keys must be hashable.

 Python's dictionary is implemented
using a hash table.

15

HashMap Implementation
 Hash table:

 Initial size: M = 7
 Must expand as needed.
 Load factor: 2/3
 Expansion size: 2M + 1

 Entries:
class _MapEntry :

def __init__(self, key, value):
self.key = key
self.value = value

16

HashMap Implementation

 Use double hashing:
 Hash function:

 Probe function:

 hash() is Python's built-in hash() function.
 Takes a built-in type as the key and returns an int

value that can be used with division method.

h(key) = |hash(key)| % M

hp(key) = 1 + |hash(key)| % (M - 2)

17

Application: Histograms
 Graphical chart of tabulated

frequencies.
 Very common in statistics.
 Used to show the distribution of data

18

The Histogram ADT
 A histogram is a container that can be

used to collect and store discrete
frequency counts across multiple
categories.
 The category objects must be comparable.

 Histogram(catSeq)
 getCount(category)
 incCount(category)
 totalCount()
 iterator()

19

Building a Histogram
 We can use the ADT to show a grade

distribution.
 Input: text file containing int grades

 Output

77 89 53 95 68 86 91 89 60 70 80 77 73 73 93 85 83
67 75 71 94 64 79 97 59 69 61 80 73 70 82 86 70 45 100

Grade Distribution
|

A +******
|

B +*********
|

C +***********
|

D +******
|

F +***
|
+----+----+----+----+----+----+----+----
0 5 10 15 20 25 30 35

20

Histogram: Example

from maphist import Histogram

def main():
Create a Histogram instance for computing the frequencies.
gradeHist = Histogram("ABCDF")

Open the text file containing the grades.
gradeFile = open('cs204grades.txt', "r")

Extract the grades and increment the appropriate counter.
for line in gradeFile :
grade = int(line)
gradeHist.incCount(letterGrade(grade))

Print the histogram chart.
printChart(gradeHist)

buildhist.py

21

Histogram: Example

Determines the letter grade for the given numeric value.
def letterGrade(grade):
if grade >= 90 :
return 'A'

elif grade >= 80 :
return 'B'

elif grade >= 70 :
return 'C'

elif grade >= 60 :
return 'D'

else :
return 'F'

buildhist.py

22

Histogram: Example

def printChart(gradeHist):
print(" Grade Distribution")
Print the body of the chart.
letterGrades = ('A', 'B', 'C', 'D', 'F')
for letter in letterGrades :
print(" |")
print(letter + " +", end = "")
freq = gradeHist.getCount(letter)
print('*' * freq)

Print the x-axis.
print(" |")
print(" +----+----+----+----+----+----+----+----")
print(" 0 5 10 15 20 25 30 35")

Calls the main routine.
main()

buildhist.py

	Hash Maps�Implementation and Applications
	Table Size
	Rehashing
	Rehashing Example
	Expansion Size
	Efficiency Analysis
	Efficiency Analysis
	Efficiency Analysis
	Hash Functions
	Function Guidelines
	Common Hash Functions
	Common Hash Functions
	Hashing Strings
	The HashMap ADT
	HashMap Implementation
	HashMap Implementation
	Application: Histograms
	The Histogram ADT
	Building a Histogram
	Histogram: Example
	Histogram: Example
	Histogram: Example

