
CSCI 204 Introduction to Computer Science II

Fall 2017 1 Project 3

CSCI 204 – Introduction to Computer Science II

Project 3 – Discrete Event Driven Simulation
Assigned: Friday, October 20th, 2017

First phase due Monday, October 30th, 2017

Second phase due Friday, November 10th, 2017

1 Objective
The main objective of this assignment is for you to practice and master priority queues and to become

familiar with discrete event driven simulations.

2 Introduction
Holiday season is around the corner!! You are just hired by a big retail store to study how cashiers and

gift-wrappers should be configured given the statistics from last holiday season so that the store can

maximize the profit, yet the customers don’t have to wait in too long a line for their services. For online

stores, the situation is similar in the sense that you need to decide how much computing power and

storage to be allocated for your web servers so that they can serve the customers well, yet the equipment

dedicated to the service don’t go wasted. One way to perform this study is to guess wisely the number of

cashiers and gift-wrappers the store would need based on last year’s statistics. For example, last year the

store used 100 cashiers and 10 gift-wrappers for each shift. Because this year’s overall annual retail sale

has grown six percent, the store is expecting a surge of 10 percent in holiday season compared to last

year. So you could tell your boss that the store would need 110 cashiers and 11 gift-wrappers.

Alternatively, you could use some mathematics formula to calculate these numbers with more accuracy

and more what-if analysis, e.g., what if the store gets some very popular items that the customers may

flock to the store with increase much more than the average numbers. Yet another and probably more

versatile method is to use computer simulation to conduct this type of study where you can change

parameters easily and study the results in various different settings.

Discrete event driven simulation is a widely used technique to model and study the behavior of many

physical systems similar to the one described above. These systems may include traffic control system,

computer networks, bank operations, super-market check-out counters, and many others. In time-step

simulation, as we saw in our lab and in our textbook, the simulation is driven by time steps. At each clock

tick, e.g., minute or second, the current status of the system is examined and events are handled as they

occur at that moment of time. In this type of simulation, the program has to step through every tick of

time, whether or not anything is happening at that moment. This is not very efficient computation. In

event-driven simulation, the simulation is driven by the sequence of events that are taking place in the

system. That is, the simulation system takes actions only when an event is happening. We added the term

discrete to the type of simulation we would like to conduct because in the simulations we are developing,

the time when events could happen is discrete, not continuous. That is, an event takes place at a discrete

time point, e.g., 3, 5, 20, and others, not in a continuous range, e.g., (3, 4].

In discrete event driven simulation, events happen in a random fashion at a random time. Every time an

event occurs, the program is designed to have a mechanism to handle this type of event. For example, if

CSCI 204 Introduction to Computer Science II

Fall 2017 2 Project 3

we take a snapshot of the operations of a bank branch office, we may see at time 10:13 a.m., a customer

arrives (Event A), the customer receives the service from a bank teller at 10:17 a.m. (Event B), the

customer completes its transaction at time 10:25 a.m. (Event C), and the customer leaves the branch

office at 10:32 a.m. (Event D). The following diagram illustrates the four events that take place in a time

sequence.

Figure 1: Event driven simulation time line

Instead of checking at every moment, e.g., every minute, if something happens in the system, event-

driven simulation schedules for events to take place at certain time and put these events in an event queue.

The event queue is ordered by the time when the events are happening. Thus an event queue is a

priority queue using the event time as the priority value. When new events take place, they are

inserted into the event queue based on the time of event. The simulation runs by taking event off the event

queue and processing the event accordingly. When processing a current event, some new event may take

place in the future as the result. For example, when the first customer arrives at the bank office, four

events can be inserted into the event queue (Event A, B, C, and D). Assume a new customer arrives at

time 10:20, then this arrival event (Event A1) should be inserted into the event queue after Event B, but

before Event C.

.

Figure 2: A new customer (A1) arrives at 10:20 a.m.

The general logic of event drive simulation is for the simulation program to process events as they come

and schedule future events as appropriate. A general algorithm of a discrete event simulation can be

outlined as follows.

CSCI 204 Introduction to Computer Science II

Fall 2017 3 Project 3

Figure 3: General program flow of discrete event drive simulation

3 Simulating Cashiers and Gift-wrappers in a Retail Store
Your task is to write a discrete event driven simulation to simulate the behavior of cashiers and gift-

wrappers at a department store when the customers come to the store in certain statistical pattern. The

project is divided into two phases. In the first phase, the simulation concentrates on the customers and

cashiers (no gift-wrappers). In the second phase of the project, we will add gift-wrappers to the system.

3.1 Phase one: simulating customers and cashiers without the gift-wrappers

For the first phase, the logic flow is as follows. The customers arrive at the cash registers at an average

rate of 1/λ customers per minute. Each customer spends on average μ1 minute at the cash register. The

inter-arrival time (arrival time between two customers) follows a random distribution between 1 and λ,

assuming λ is an integer greater than 1. The time for each customer spent at the cash register is also

randomly distributed between 1 and μ1, assuming μ1 is an integer greater than 1. There are a total number

of n register cashiers. For simplicity, we assume that the customers are forming one waiting line when

they come to the cash register areas. When a customer comes to the cashier register, if no one is waiting

in the waiting line (queue), and if there is a free cashier, the customer receives the service immediately. If

someone is already in the waiting queue, the newly arrived customer joins the queue at the end. From the

cashier (the server) point of view, the cashiers keep serving customers until there is no one waiting in the

customer queue. That is, every time a cashier finishes serving a customer, she will check the customer

queue. If anyone is waiting in the customer queue, the cashier takes the first one off the queue and starts

service.

3.2 Phase two: simulating customers, cashiers, and the gift-wrappers

In phase two, we add some complexity to the system. In phase one of the project, a customer leaves the

system immediately after the service is completed. In phase two, a portion of the customers will go to the

gift-wrappers for further service. Assume there are a total of m gift-wrappers. The time that a customer

spends at gift wrapping station is a random variable with a value between 1 and μ2. Similar to the service

time for cashiers, we assume μ2 is an integer greater than 1. On average, p percent of the customers take

the gift wrapping service and 100 – p percent the customers leave the system immediately after paying the

cashiers.

In both phases of the project, the statistics to be collected is the average waiting time for the customers.

For the first phase, the average waiting time at the cashier register is computed. In the second phase of the

project, the average waiting time at both the casher register and the gift-wrapping station is computed and

generate initial events and insert them into event queue

while event queue is not empty and simtime < totaltime:

 take an event off the event queue

 set the simtime as the event time

 process the event (possible generate new events)

CSCI 204 Introduction to Computer Science II

Fall 2017 4 Project 3

reported separately. Your program should also keep the total number of customers arrived, served by the

cashiers and gift-wrappers, as well as the number of customers left in the waiting lines.

4 Some Technical Details
This section provides some technical details needed to develop a discrete event driven simulation. Please

refer to the “Introduction” section and Figure 3 for general concepts of discrete event driven simulation.

4.1 Types of events and their handling
One center piece of a discrete event driven simulation is to define the various types of events. In our

project, the following events will be needed. You can define these events as a collection of constants in

your simulation class.

1. CustomerArrival event: A customer arrives at the cashier registers area at a random time. When a

customer arrives, if any cashier is free, the customer starts to receive service immediately. If no

cashier is free, the customer joins the single waiting queue. At this moment, your program should

generate the next CustomerArrival event. If the current customer arrives at time t, the next

customer should arrive at time t + randm.randint(1, lamda), where lambda is the specified

average inter-arrival time as an integer. The program should keep a counter of the total customers

arrived.

2. CashierServiceBegin event: The customer starts to receive service from a cashier. The cashier is

set to be busy. The amount of time the customer spends at the cashier register (scanning all

purchased items, computing the total payment, bagging all items, and putting all items into a

shopping cart) is also randomly distributed following an exponential distribution

random.randint(1 ,mu), where mu is the specified average service time. When a

CashierServiceBegin event takes place, an event that the customer service ends should be

scheduled at the time the service completes and be put into the event list. When the customer

starts to receive service, its waiting time should be computed and be added to the total waiting

time.

3. CashierServiceEnd event: When a customer finishes the service at the cashier register, the

simulation program should increment the total number of customers who finishes the service with

the store. Since now this cashier is free, the program checks to see if anyone is waiting in the

customer waiting queue. If someone is waiting, take that customer off the queue and starts the

service immediately. If no one is waiting in the queue, the cashier is set to be idle.

4. WrapServiceBegin event: In the first phase of the project, customers who complete the service

with the cashiers leave the store immediately. In the second phase of the project, a portion of the

customers after finishing with the cashier registers will go to the gift-wrapping service to wrap

their gifts. The gift-wrapping service is effectively another service station, similar to the cashier

registers. A customer who wants to wrap the gifts joins the waiting queue if all gift wrappers are

busy. If a gift-wrapper is available, the customer starts the service immediately. The service time

is a random variable random.randint(1, mu1), where mu1 is the specified average wrapping

service time. Similar to that of a cashier register service, when a customer starts a wrapping

service, the event that the customer ends its wrapping service should be scheduled and inserted

into the event list. The waiting time in the gift-wrapping service should also be computed.

CSCI 204 Introduction to Computer Science II

Fall 2017 5 Project 3

5. WrapServiceEnd event: When a customer finishes the gift-wrap service, the total number of

customers who completes this service should also be computed. The simulation checks to see if

anyone is waiting in the gift-wrapping queue, if so the first customer is taken off the queue and

starts the service immediately. If no one is waiting, this gift-wrapper is set to be idle.

4.2 Various queues in the program
The simulation program you are asked to write in this project involves various queues to realize different

functionality. Two types of queues are needed, the event queue which is a priority queue whose priority

value is the time when an event takes place (event time), and the customer waiting queue at the cashier

registers, and the customer waiting queue at the gift-wrapping stations (Phase 2).

1. Event list (a.k.a. event queue): Events that happen in the simulation are stored in the event list.

The events on the even list are ordered by the time when the event should take place in the

simulation. (See Figure 2 for an illustration of events happening on the time line.) The main

simulation loop (See Figure 3) always takes the first event off the even list and process it as the

current event, until either the event queue becomes empty, or the total simulation time is reached.

The nodes on the event list should contain three pieces of information, the event time, the event

type, and the customer involved in this event.

2. Waiting queues: All customers who arrive but can’t start the service immediately should be put

into a waiting queue. In Phase 1 of the project, only one waiting queue exists in the system, the

cashier register waiting queue. All customers (cashier registers) share one common waiting

queue. In Phase 2 of the project, a waiting queue for the gift-wrapping stations is added. Similar

to the cashier waiting queue, all customers who receive gift-wrapping service share a common

queue. These two waiting queues are first-come-first-serve (FCFS) queues. The nodes in these

waiting queues should be of the same type as those in the event queue.

4.3 Servers (cashiers and gift-wrappers) and customers
Your program needs two classes of people (see the textbook example for defined simpeople, textbook

Section 8.4, pp 237 – 244, or on the course website http://www.eg.bucknell.edu/~csci204/2017-

fall/projects/queues/), customers and cashiers in Phase 1, and additional class gift-wrappers for Phase 2.

Because in our simulation, we will have n cashers and m gift-wrappers, you need to define an array (or

using Python list) of each. It is a good idea to separate these simulation agents (people) from the nodes

needed for the event list (see previous section). Define the customers, cashiers, and gift-wrappers similar

to those in the example from the textbook, but keep the event time separate. The nodes needed for event

list and other queues can contain customers as a data member of the object. We can define these nodes as

a class called Event.

4.4 Statistics to be collected
The following statistics are to be collected.

1. Average waiting time in the cashier queue (Phase 1 and Phase 2): This value is the total waiting

time divided by the total number of customers who receive the service.

2. Total number of customers who completed the service and total number of customers who are left

in the cashier waiting queue when the simulation finishes (Phase 1 and Phase 2).

3. In Phase 2, also compute the above two statistics for the gift-wrapping stations.

http://www.eg.bucknell.edu/~csci204/2017-fall/projects/queues/
http://www.eg.bucknell.edu/~csci204/2017-fall/projects/queues/

CSCI 204 Introduction to Computer Science II

Fall 2017 6 Project 3

4. At the end of the simulation, also print such statistics as the total number of cashiers, gift-

wrappers, total simulation time, and the total number of customers arrived at the store.

5 Test Your Programs and Strategies for Development
Start your program with simple settings and easy to control tests. For example, define the customers,

cashiers classes first and test them before using them in the simulation program. When writing the

simulation, start the run() (see textbook example for which the complete code is given in the course

web directory) method with the main while loop, consider what logics should go there in the loop. (See

Figure 3.) Concentrate on the simulation logic of customer arrivals and services first before collecting

statistics.

It is also a good idea to use print statements throughout the program. For example, when a customer

arrives, or when a customer receives and finishes its service, print some information so you can see how

the program is running. You can make these printing statements conditional, e.g., define a class variable

called debug, set it to be True while debugging, and your printing statements should check if the

program is in debugging mode, print the information, if not, don’t print anything. When the program is

completed, you can set this debug variable to be False so that no extra information is printed. The

following is a snapshot of running the program with debugging mode on. (Events between time 2 and 31

are not shown because of limited space.

Figure 4: Snapshot of running the simulation

When your program works correctly, you can turn off the debugging mode and print just the summary of

the simulation (the last block of the statistics in Figure 4.)

You are asked to test your program with following two sets of parameters for the first phase. You can try

other configurations, but submit the results for these two.

1. Number of cashier 2, average customer inter-arrival time 2, average cashier service time 5,

simulation time 1000.

2. Number of cashier 5, average customer inter-arrival time 2, average cashier service time 14,

simulation time 3000.

Simualtion starts ...

Time 0 : Customer 0 arrived.

Time 0 : Customer 0 service starts by cashier 0

Time 1 : Cashier 0 stopped serving customer 0 .

...

Time 32 : Cashier 1 stopped serving customer 19 .

Time 32 : Customer 20 service starts by cashier 1

====== Simulation Statistics =======

number of cashier : 2

totalSimTime: 30

interarrivalTime: 2

cashier service time: 5

Number of customers served = 21

Number of customers remaining in line = 1

The average wait time was 1.48 minutes.

=====================================

Simualtion ends ...

CSCI 204 Introduction to Computer Science II

Fall 2017 7 Project 3

In the second phase, use the same two sets of parameters as above for cashiers. But add the parameters for

the average gift-wrap time of 2 for the both cases. But in the first case, the number of gift-wrappers is 1,

and in the second case, the number of gift-wrappers is 2.

6 Submission
Submit one zip file for each phase which should include the program and one README.txt file. In the

readme.txt file, include the result of sample runs and explain your program briefly. Make sure to include

the assignment number and your name in the readme files. Submit the zip file for each phase to Moodle

separately.

7 Grading Criteria
When grading each of the two phases, we will look for the quality of the program from various aspects as

well as the correctness. Here are the grading criteria.

1. Functionality: 60%

 User-friendly and well-formatted input and output (10%)

 Correctness of computation (25%)

 Program satisfies the problem specifications (25%)

2. Organization and style: 30%

a. Program follows object-oriented design approach and contains at least classes for various

simulation people, the simulation class itself, and various queues (10%)

b. Variables and functions have descriptive names following Python convention (5%),

program contains sufficient amount of docstrings explaining the functionality of its major

parts and comments explaining specific actions that blocks of code are performing, each

code file has comments on the top including student name, date and file description (5%)

c. Code is structured, clean, organized and efficient. Each python code file that doesn’t

include the “main” function contains description of only one class (10%). To earn full

grade in this category, avoid leaving commented-out legacy code in your submission.

3. Extraordinary elements, creativity and innovation: 10%

This includes anything beyond the provided specification that makes your program stand out.

