
CSCI 204 Data Structures and Algorithms

Spring 2020 Lab 10 1

CSCI 204 – Data Structures and Algorithms

Lab 10 – Lists & Iterators

1. Objectives

The objectives of this lab are to:

• Become familiar with iterators

• Write an iterator for a List class

Read the entire lab description before you begin working on the assignment.

2. Introduction

An iterator is a feature commonly found in those ADTs that allow a user to peek at any data in the

ADT. Therefore, a Bag, a Dictionary, a List, and a Tree will have an iterator while a Stack and a

Queue will not. An iterator allows the user to examine each datum in the ADT one at a time without

needing to specify indices. This is how the for loop allows the user to examine the data in an array

or the keys in a dictionary.

array = [1,3,5,7,9,2,4,6,8]

for x in array:

print(x)

dict = {'Alice':3, 'Bob':23, 'Carol':7}

for name in dict:

print(name, dict[name])

Iterators can be built in any language but Python provides built-in support for iterators in the form

of a class method.

Take a minute to read more about the class method from the following link,

https://docs.python.org/3/reference/datamodel.html#object.__iter__

An iterator (in any language) comes with some basic functionality:

• _ _init_ _(self, a_structure) creates the iterator and gets it ready to return data.

(Does not return any data yet.) The structure in the input is either the array or the head node

holding data. Other inputs such as size and capacity may be passed in if needed.

• _ _next_ _(self) Returns the next data in order in the ADT.

• There are also a few that you may see in other languages, but are not in Python. (Skip ahead if

https://docs.python.org/3/reference/datamodel.html#object.__iter__

CSCI 204 Data Structures and Algorithms

Spring 2020 Lab 10 2

you’d like):

• _ _prev_ _(self) Returns the previous data in order in the ADT. (Not in Python)

• _ _hasNext_ _(self) Returns True if there is next data to be accessed in the ADT.

(Not in Python)

• _ _hasPrev_ _(self) Returns True if there is previous data to be accessed in the

ADT. (Not in Python)

In Python, the iterator is its own class that implements the above functionality and the ADT simply

returns an instance of the iterator. See the following example.

class Bag:

def _ _init_ _(self):

self._head = None

def _ _iter_ _(self):

return _BagIterator(self._head)

Notice the underscore in front of the _BagIterator class name. This is because no other class should

make a Bag iterator instance, that is, it’s a hidden class.

class _BagIterator:

def _ _init_ _(self, head):
“”” Create the iterator and get it ready to start when next

is called. “””

def _ _next_ _(self):

“”” Return the next datum or raise a StopIteration

exception. “””

def _ _iter_ _(self):

“”” return ourself so we can be used. “””

return self

We'll be able to use the iterator methods in the for loop. The loop knows when to stop because

_ _next_ _(self) raises a StopIteration exception when there is no next data to return. Here

is how our Bag iterator gets used:

for item in bag:

print(item)

CSCI 204 Data Structures and Algorithms

Spring 2020 Lab 10 3

3. Getting started

Begin by making a working directory for this lab. Copy the test program main.py from

~csci204/student-labs/lab10/

You can also get the copy of the file directly from the course Moodle site.

After implementing the proper iterator, run the main.py program to test your implementation. Leave

the main.py alone, put all your implementation in a file named linkedlist.py.

1. Implement a List class using (Singly) Linked-List nodes.

Create a ListNode class that contains the following attributes:

• data: contains any data that then node should represent.

• next: contains a pointer to the next item in the list.

The ListNode should also override a __str__() or a __repr__() method so that you can write a

statement such as print(my_node)that can print the information of a ListNode object.

Create a List class (in the same file as the ListNode class) with the following methods &

functionality:

• _ _init_ _(self): creates an empty list. This mean creating attributes with attributes to keep

track of the head of your list as well as the size of it, but with head pointing to None as there is

nothing yet at the head of the list.

• _ _len_ _(self): returns the size of the list.

• insert(self, item, index): inserts an item at the given index where item is some

data that must be placed into a ListNode object. If the index is too small, insert at index 0. If

the index is too large (larger than your current size), insert it after the last element. If the index is

occupied, put the item at the index and move the previously occupying item to the right.

• append(self, item): appends an item to the end of the list.

• pop(self, index): removes and returns the item at the given index. If the index is not

provided, remove and return the last item in the list. If the index is illegal do nothing.

• peek(self, index): returns the item at the given index. If the index is illegal raise a

ListException.

2. Write a hidden ListIterator class (proceeding your class name with an underscore) in the same

file as your list class. Your class must have the following functionality:

• _ _init_ _(self, a_structure): creates the iterator and gets it ready to return data.

(Does not return any data yet). The structure in the input is either the array or the head node of

your List. Other inputs such as size and capacity may be passed in if needed.

• _ _next_ _(self): returns the next data in order in the ADT. If there is no next data,

raise a StopIteration exception.

• _ _iter_ _(self): return your ListIterator (just return self).

CSCI 204 Data Structures and Algorithms

Spring 2020 Lab 10 4

3. Give your List class functionality for an iterator by overriding the correct method. (If you can’t

remember the method to override reread the beginning of the lab directions!)

4. Run the main.py and save a copy of the output to a text file named out.txt.

Hand-in your List class with the Iterator class in the same file (linkedlist.py) and the test

program (main.py) along with the output file out.txt.

