
 1

CSCI 204 – Data Structures and Algorithms
Lab 11 – Quicksort and Efficiency

1 Objectives
The objectives of this lab are to:

• Examine program efficiency

• Improve a program’s efficiency

• Become familiar with Quicksort

In this lab you will learn about program efficiency by analyzing the efficiency of the quicksort

algorithm. You will also learn a technique that improves the efficiency of quicksort by provid-

ing better pivots in the case of certain inputs that cause quicksort to take a long time (i.e., O(n2)

or quadratic time) to run.

Read this whole document first before you begin the assignment.

2 Introduction
In this lab you will analyze the efficiency of quicksort. To summarize, the algorithm works by

selecting an element in the list, called a pivot. Next, the algorithm partitions the list into two

separate lists - those elements that are less than the pivot, and those that are greater than or

equal to the pivot. You recursively call the quicksort algorithm on these sublists. This process

repeats until the sublists contain only one element (i.e., the base case in the recursion.) By def-

inition, a list of one element is sorted, and the recursion returns the sorted list. Some imple-

mentations take these sublists and merge them back together. However, the best implementa-

tions of quicksort perform an in-place sort, alleviating the need for a merge at the end. (In-

place means we only use one list instead of creating new smaller lists with each partition. We

use the in-place version here). Though this lab makes light of the selection of the pivot, this is

the most essential part of the algorithm. Selecting the pivot determines how well the list can be

partitioned, and it can have a dramatic effect on the running time of the algorithm.

You will perform a very basic analysis on the observed running time of the algorithm on a

couple of different test input lists. To gather data about the running time, you will observe the

number of key comparisons that quicksort uses to sort a list of data. Key comparisons are com-

parisons between the values in the list. You will perform a test on a list of random data, and

then on data that is already sorted. The first implementation of the partition algorithm, that is,

picking the first element in the list as the pivot, will demonstrate the worst-case running time to

be O(n2) (that’s quadratic) on the sorted list! This is hardly a desirable outcome. You will mod-

ify quicksort algorithm so that its worst-case behavior on sorted lists is dramatically improved.

We’ll call the improved version of quicksort the modified version of quicksort. After you have

completed test runs of the unmodified and modified versions of quicksort and collected data on

their performance when sorting random data and data that is already sorted, you will graph

your data and compare it with our predicted behavior of quicksort.

 2

3 Getting Started

Make a directory for this lab. Copy the file(s) from the Linux directory ~csci204/student-

labs/lab11/. (You may also retrieve a zip file from the course Moodle site.) You should see the follow-

ing set of files.

MyGraph1.m MyGraph2.m quicksort.py

You will work from these files to complete your lab exercises. Please create a lab.txt file to record

the results.

4 Running Quicksort from main()

You will be editing the quicksort algorithm and you need to make sure it is still working so you’ll

need to test it.

Task 1: Add code to the main() method in quicksort.py to test quicksort.

1. Create a Python list of 10 random integers (in the range 0…10). Use randint() to

generate random integers. Print the list, sort it using the given quicksort() method,

and print the list again. You will be able to quickly verify that the given quicksort()

method is working correctly.

2. Do the same thing for a list of 10 sorted integers. Use the Python range() method to

generate your sorted list.

3. Run your code to make sure that you don’t have any unexpected runtime errors.

Next, you will run the quicksort algorithm on Python lists of increasing size, from 8, 16, 32, … ,

16384 (i.e., 23, 24,· · · , 214). That is, the list size will double each time.

Task 2: Add more code to main to test the Big-O runtime of quicksort.

1. Create a list of all the required sizes [8, 16, 32,· · · , 16384] using a list comprehension.

2. Use a for loop to create a list of each size: Fill the list with random numbers in the range 0 to

20,000 and then sort it. Do not print these lists because it will be too long.

3. Do the same thing for sorted numbers but only create lists up to size 512 (29) since lists

larger than that will exceed Python 3’s maximum recursion depth (too many recursive

calls).

4. Run your code to make sure that you don’t have any unexpected runtime errors.

5 Counting Key Comparisons in Quicksort
A key comparison occurs whenever two values in the list are compared. Therefore, comparing the

contents at two list indices is a key comparison while comparing two list indices is not.

Here are some examples.

 3

if array[index] < array[otherIndex]: # a key comparison

if array[index] < smallest: # a

key comparison

if index < otherIndex: # NOT a key comparison

Task 3: Count the key comparisons.

Revise the partition() method so that it will count the number of key comparisons that were

required for a sort. Be sure to count only key comparisons.

1. Define the counting variable as a global variable so it can be used in different methods.

2. Reset the count to zero before each call to quicksort() in main().

3. Increment the count each time you do a key comparison in partition().

4. In main(), create files called outru (where the letter ‘r’ means ‘random’, and the let-

ter ‘u’ means ‘unmodified’) and outsu (‘sorted’, ‘unmodified’).

5. After quicksort returns, print a line containing the size of the list and the number of key

comparisons. Print only these two numbers separated by a space character on each line.

Don’t label your output or print any other words or numbers. The tests on random lists

should print to outru and the tests on sorted lists should print to outsu.

6. Remember to close both files at the end of main().

A sample of your output should look something like:

8 18

16 41

32 173

64 312

128 859

256 1950

512 4595

1024 10816

2048 24813

4096 67139

8192 118310

16384 269269

Glance at the files outru and outsu. With the pivot scheme as defined in the partition meth-

od as it stands right now, Quicksort’s worst case behavior occurs when the list is already sorted

so outsu should have much higher key comparison counts than outru.

6 Graphing the Results
Now you will use the MATLAB commands in MyGraph1.m to produce the plot.

Task 4: Graph your unmodified results.

 4

Open a Linux shell window, change to the directory for today’s lab. Start MATLAB at the

prompt by typing matlab &. Run the command file MyGraph1.m inside of MATLAB by

typing the command MyGraph1 at the MATLAB prompt and it will execute the script for

you.

7 Improving quicksort’s Efficiency
First, make sure you understand why quicksort is performing so poorly on the sorted input. The

reasoning has everything to do with how we choose the pivot. Currently, we always choose the

first element in the list as the pivot. When the list is already sorted, the result is a worst -case

split, meaning, no elements will be less than the pivot, and the rest of the specified list are all

greater than the pivot! As a result, the list is split into two lists with one list of size 1 and the

other list of size n-1. You cannot have a worse outcome with quicksort! In this case, our quick-

sort case ends up performing no better than typical O(n2) sorting algorithms.

There are numerous algorithms out there that improve the running time of quicksort by coming

up with a better scheme for choosing the pivot. To get the theoretical best case scenario with

quicksort, we want to choose a pivot that splits the list equally during every step of the recur-

sion. (In other words, you want to choose the exact median of the sublist at every step of the

recursion.) This would give us a worst case running time of O(nlogn). To do this precisely,

however, would require a sorted list so the position that splits the list in exact half can be com-

puted. Not exactly ideal. In situations like this, we use reasonable approximations that take

very little extra time to compute. One simple solution is to use median-of-three partitioning.

The median-of-three partition takes the first, middle, and last numbers in the list and puts the

median of those numbers into the first spot so it can be used as the pivot. This means the pivot

is guaranteed not to be the absolute highest or lowest number in the unsorted portion of the list.

You will implement this improved partition algorithm and graph the key comparison counts to

see how much this change improves the quicksort algorithm.

8 Modifying the quicksort() Method

Task 5: Make a copy of quicksort() and partition().

Copy the quicksort() and partition() methods and name the copies quicksortm() and

partitionm() (m for modified). Doing so allows one to be able to run to the unmodified code

again when needed. Edit quicksortm() so it calls quicksortm() (recursively) and parti-

tionm(), not to the original methods of patition() and quicksort().

Task 6: Add more code to main to test the Big-O runtime of quicksortm().

1. Test your modified quicksortm() on size 10 lists for both random and sorted data.

2. Run your modified quicksortm() on Python lists of increasing size, from 8, 16, 32, … , 16384

(i.e., 23, 24,· · · , 214). (This time, you will be able to do 214 even for the sorted list). You will

 5

be producing files named outrm and outsm (random modified and sorted modified).

9 Modifying the partition() Method to Use a Better Pivot

You need to make a change to how the pivot is selected in the partition() method. (Re-

member the change(s) are to be made in partitionm()!) To implement median-of-three

partitioning, examining the values in the first, middle and last positions of the list. (You already

have first and last positions. How do you calculate the middle position?) The current method

uses the first element as the pivot. Therefore, you need to examine the elements at these three

positions, swap the median of these values into the first (i.e., the pivot) position, and then pro-

ceed as usual.

You can determine which of these three values has the median value by using if statements and calls

to the swap() method. Be sure to add any new key comparisons into your key comparison count.

Task 7: Implement the median-of-three strategy in partition().

Run your program to generate all four output files and to verify that all four short lists (0 through 9,

inclusive) were successfully sorted.

10 Graphing your results again

Now it’s time to graph all four output files and see how the efficiency of quicksort has changed

with the median-of-three partition algorithm. This time, you will also edit the MATLAB program

so it puts your name on the graph.

Now you will use the MATLAB commands in MyGraph2.m to produce the plot.

Task 8: Graph all of your results.

Open a Linux shell window, change to the directory for today’s lab. Start MATLAB at the prompt

by typing matlab &.

Open the command file MyGraph2.m inside of MATLAB by clicking the file name

MyGraph2.m on the left panel inside the MATLAB IDE. Essentially you need to open the

MyGraph2.m file for editing with MATLAB. Edit the title command so that it inserts your name

where it says YOUR NAME HERE. Save your work and close the editor. Run the command file

MyGraph2.m inside of MATLAB by typing the command MyGraph2 at the MATLAB prompt

and it will execute the script for you. The shape of the graph should look very similar, or identical to

what is shown in Figure 4 at the end of the lab description.

 6

When the graph is nicely formatted on screen within MATLAB’s plotting window, select File |

Export Setup … from the plot window. In the dialog window that comes after the exporting

command, click on the Export button. In the next dialog select Portable Document Format as the file

format and name the file graph.pdf. Click on the Save button. After the graph is saved as a PDF

file, click Ok to leave the dialog box.

To view the resulting PDF file, open a Linux shell window and type atril graph.pdf &.

11 Submitting the lab work

Upload your code (quicksort.py) and the PDF file (graph.pdf) to Moodle. Double check to make sure

your files all got uploaded successfully.

12 Double checking your results

The following graphs show some of the common errors in programming when generating data. The

last one shows the correct graph. Check against these graphs to see if your results are correct.

Figure 1. This shows a graph achieved when comparisons are counted incorrectly

 7

Figure 2. This shows a graph that reflects a bad pivot value

Figure 3. This graph is fairly common when count is not correct reset

 8

Figure 4. That's a nice graph. (It's Correct!)

