3/13/2020

B -

Structure of a simulation program

« Asimulation is commonly designed to allow user supplied parameters to define

for each time step in range of total time:
processing event type one
processing event type two

System Parameters and Results

conditions:
« Length of the simulation (begins at time 0) in time ticks.
« Number of servers.
« Expected (average) time to complete a transaction.
« Distribution of arrival times, that is, average arrival time and its probability
distribution.

By adjusting these parameters, the conditions can be changed under which the
simulation is performed.

Different statistics can be collected such as average waiting time for the
customers, longest waiting time, deviation of the waiting time ...

Sample Event Rules
To determine the average wait time:
« If a customer arrives, they are added to the queue.
— at most one customer can arrive per time step.
« If there are free servers and customers waiting, the next
customer in line begins their transaction.
- we begin a transaction for each free server.
« If a transaction ends, the customer departs and the server
becomes free.
- multiple transactions can complete in one time step.
- The waiting time of the customer is the difference between
arrival at the queue and the start of the service, not including
the time in service.

Sample Events

« Some sample events include:
« Customer arrival
« Start or end of a transaction (service)
« Customer departure

Event Rules

« A set of rules are defined for handling the
events during each tick of the clock.

« The specific rules depend on what is
being studied.

Random Events

« To correctly model a queuing system, some events
must occur at random. (i.e., customer arrival)
« We need to model this action as close as possible.
« Specify the odds of a customer arriving at each
time step as the average time between arrivals.
« Use a random number generator to produce a value.
« The length of service a customer receives can
also be a random value.

3/13/2020

3/13/2020

Number of minutes to simulate: 25

Passenger 1 arrived.

Agent 1 started serving passenger 1.

Passenger 2 arrived.

Agent 2 started serving passenger 2.
enger 3 arrived.

Number of passengers served 12

link to code

class Passenger :
Creates a passenger object.
def _init__ (self, id num, arrival time):

self._id num id_num

http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simpeople.py

3/13/2020

class TicketAgent : from array import Array
def _init (self, from 1listqueue import Queue
seTf._id num - id ni from simpeople import TicketAgent, Passenger
self. passenger
self. stop_time = class TicketCounterSimulation :
£ __init_ (self, num_agents, num_minutes,
def id_num(self): tueen_time, service_time

71-‘. TicketCounterSimulation : class TicketCounterSimulation :

"# Run the simulation using the parameters supplied earlier. S o ‘
daf Tun(Self): g e o # The remaining methods that have yet to be implemented.

for cur_time in range(self. num minutes + 1) : # def _handle arrive(cur_time): # Handles simulation rule #1.
self. handle_arrival(cur_time
1£. handle_begin_service(cur_time)

class TicketCounterSimulation : class TicketCounterSimulation :
The remaining methods that have yet to be implemented. # The remaining methods that have yet to be implemented.
def _handle begin_service(cur_time): # Handles simulation rule #2. # def _handle end service(cur_time): # Handles simulation rule #3.

http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simpeople.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py

3/13/2020

