
3/13/2020

1

CSCI 204: Data Structures &
Algorithms

1

Simulation
An Application of Queue ADT

Revised based on textbook author’s notes.

3

Computer Simulations

 Computers can be used to model and simulate real-world
systems and phenomena.
 Computer applications.
 Designed to represent and react to significant events in

the system.
 Examples:

 Weather forecasting
 Flight simulators
 Business activities

4

Airline Ticket Counter
 How many ticket agents are needed at certain times

of the day in order to provide timely service?
 Too many agents will cost the airline money.
 Too few will result in angry customers.

 A computer simulation can be developed to model
this real system.

 The problem can be studied with various
parameters without the system being physically
built.

5

Queuing System

 A system where customers must stand in line
awaiting service.
 A queue structure is used to model the system.
 Simple systems only require a single queue.
 The goal is to study certain behaviors or

outcomes.
 average wait time
 average queue length
 average service time

6

Discrete Event Simulation

 Consists of a sequence of significant events that cause
changes in the system.
 Time driven and performed over a preset time period.
 Passing of time is represented by a loop, one iteration per

clock tick or per event.
 Events can only occur at discrete time intervals. (Thus this

is called a discrete event-driven simulation.)
 Time units must be small enough to accommodate the

events.

3/13/2020

2

Structure of a simulation program

for each time step in range of total time:
processing event type one
processing event type two
…

8

Sample Events

 Some sample events include:

 Customer arrival

 Start or end of a transaction (service)

 Customer departure

9

System Parameters and Results

 A simulation is commonly designed to allow user supplied parameters to define
conditions:
 Length of the simulation (begins at time 0) in time ticks.
 Number of servers.
 Expected (average) time to complete a transaction.
 Distribution of arrival times, that is, average arrival time and its probability

distribution.

 By adjusting these parameters, the conditions can be changed under which the
simulation is performed.

 Different statistics can be collected such as average waiting time for the
customers, longest waiting time, deviation of the waiting time …

10

Event Rules

 A set of rules are defined for handling the
events during each tick of the clock.

 The specific rules depend on what is
being studied.

11

Sample Event Rules
 To determine the average wait time:

 If a customer arrives, they are added to the queue.
 at most one customer can arrive per time step.

 If there are free servers and customers waiting, the next
customer in line begins their transaction.
 we begin a transaction for each free server.

 If a transaction ends, the customer departs and the server
becomes free.
 multiple transactions can complete in one time step.

 The waiting time of the customer is the difference between
arrival at the queue and the start of the service, not including
the time in service.

12

Random Events

 To correctly model a queuing system, some events
must occur at random. (i.e., customer arrival)

 We need to model this action as close as possible.

 Specify the odds of a customer arriving at each
time step as the average time between arrivals.

 Use a random number generator to produce a value.

 The length of service a customer receives can
also be a random value.

3/13/2020

3

13

Sample Simulation

 Analyze the average time passengers have
to wait for service at an airport ticket
counter.

 Multiple ticket agents.

 Multiple customers that must wait in a single
line.

14

System Inputs

 The program will prompt the user for the
queuing system parameters.

 For simplicity, we use minutes as the discrete
time units.

Number of minutes to simulate: 25

Number of ticket agents: 2

Average service time per passenger: 3

Average time between passenger arrival: 2

15

System Outputs

 After performing the simulation, the program
will produce the following output:

Number of passengers served = 12

Number of passengers remaining in line = 1

The average wait time was 1.17 minutes.

16

Debug Info
 We also display event information that can help

verify the validity of the program.
Time 2: Passenger 1 arrived.

Time 2: Agent 1 started serving passenger 1.

Time 3: Passenger 2 arrived.

Time 3: Agent 2 started serving passenger 2.

Time 5: Passenger 3 arrived.

Time 5: Agent 1 stopped serving passenger 1.

Time 6: Agent 1 started serving passenger 3.

Time 6: Agent 2 stopped serving passenger 2.

Time 8: Passenger 4 arrived.

Time 8: Agent 2 started serving passenger 4.

Time 9: Agent 1 stopped serving passenger 3.

Time 10: Passenger 5 arrived.

Time 10: Agent 1 started serving passenger 5.

Time 11: Passenger 6 arrived.

Time 11: Agent 2 stopped serving passenger 4.

Time 12: Agent 2 started serving passenger 6.

Time 13: Passenger 7 arrived.

17

Class Organization

 Our design will be an object-oriented solution
with multiple classes.

 Passenger – store info related to a passenger.

 TicketAgent – store info related to an agent.

 TicketCounterSimulation – manages the
actual simulation.

18

Passenger Class
class Passenger :

Creates a passenger object.

def __init__(self, id_num, arrival_time):

self._id_num = id_num

self._arrival_time = arrival_time

Gets the passenger's id number.

def id_num(self) :

return self._id_num

Gets the passenger's arrival time.

def time_arrived(self) :

return self._arrival_time

simpeople.py link to code

http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simpeople.py

3/13/2020

4

19

TicketAgent Class
class TicketAgent :

def __init__(self, id_num):

self._id_num = id_num

self._passenger = None

self._stop_time = -1

def id_num(self):

return self._id_num

def is_free(self):

return self._passenger is None

def is_finished(self, cur_time):

return self._passenger is not None and self._stop_time == cur_time

def start_service(self, passenger, stop_time):

self._passenger = passenger

self._stop_time = stop_time

def stop_service(self):

the_passenger = self._passenger

self._passenger = None

return the_passenger

simpeople.py link to code

20

The Simulation Class
from array import Array

from llistqueue import Queue

from simpeople import TicketAgent, Passenger

class TicketCounterSimulation :

def __init__(self, num_agents, num_minutes,

between_time, service_time):

Parameters supplied by the user.

self._arrive_prob = 1.0 / between_time

self._service_time = service_time

self._num_minutes = num_minutes

Simulation components.

self._passenger_q = Queue()

self._the_agents = Array(num_agents)

for i in range(num_agents) :

self._the_agents[i] = TicketAgent(i+1)

Computed during the simulation.

self._total_waitTime = 0

self._num_passengers = 0

...

simulation.py link to code

21

The Simulation Class
class TicketCounterSimulation :

...

Run the simulation using the parameters supplied earlier.

def run(self):

for cur_time in range(self._num_minutes + 1) :

self._handle_arrival(cur_time)

self._handle_begin_service(cur_time)

self._handle_end_service(cur_time)

Print the simulation results.

def print_results(self):

num_served = self._num_passengers - len(self._passengerq)

avg_wait = float(self._total_waitTime) / num_served

print("")

print("Number of passengers served = ", num_served)

print("Number of passengers remaining in line = %d" %

len(self._passenger_q))

print("The average wait time was %4.2f minutes." % avg_wait)

The remaining methods that have yet to be implemented.

def _handle_arrive(cur_time): # Handles simulation rule #1.

def _handle_begin_service(cur_time): # Handles simulation rule #2.

def _handle_end_service(cur_time): # Handles simulation rule #3.

simulation.py link to code

22

The Simulation Class
class TicketCounterSimulation :

...

The remaining methods that have yet to be implemented.

def _handle_arrive(cur_time): # Handles simulation rule #1.

def _handle_arrival(self, cur_time):

p = random.random()

if p < self._arrive_prob: # a passenger should arrive

passenger = Passenger(self._num_passengers, cur_time)

self._passenger_q.enqueue(passenger)

print('Time ', cur_time, ': Passenger ', \

self._num_passengers, ' arrived.')

self._num_passengers += 1

def _handle_begin_service(cur_time): # Handles simulation rule #2.

def _handle_end_service(cur_time): # Handles simulation rule #3.

simulation.py link to code

23

The Simulation Class
class TicketCounterSimulation :

...

The remaining methods that have yet to be implemented.

def _handle_begin_service(cur_time): # Handles simulation rule #2.

def _handle_begin_service(self, cur_time):

if self._passenger_q.is_empty() == False: # handle a customer

agent_ID = self._find_free_agent()

if agent_ID >= 0: # found a free one

this_passenger = self._passenger_q.dequeue()

stop_time = cur_time + self._service_time

self._the_agents[agent_ID].start_service(this_passenger, stop_time)

self._total_wait_time += cur_time - this_passenger._arrival_time

print('Time ', cur_time, ': Agent ', agent_ID, \

' started serving passenger ', this_passenger.id_num(), '.')

def _handle_end_service(cur_time): # Handles simulation rule #3.

simulation.py link to code

24

The Simulation Class
class TicketCounterSimulation :

...

The remaining methods that have yet to be implemented.

def _handle_end_service(cur_time): # Handles simulation rule #3.

def _handle_end_service(self, cur_time):

agent_ID = self._find_finish_agent(cur_time)

if agent_ID >= 0: # found one who should complete the service

this_passenger = self._the_agents[agent_ID].stop_service()

print('Time ', cur_time, ': Agent ', agent_ID, \

' stopped serving passenger ', this_passenger.id_num(), '.')

simulation.py link to code

http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simpeople.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py
http://www.eg.bucknell.edu/~csci204/2020-spring/meng/notes/24-code/simulation.py

3/13/2020

5

25

Simulation Objects

 Sample instances of each class.

26

Sample Results
Num

Minutes
Num

Agents
Avg

Service
Time

Between
Avg
Wait

Passengers
Served

Passengers
Remaining

100 2 3 2 2.49 49 2

500 2 3 2 3.91 240 0

1000 2 3 2 10.93 490 14

5000 2 3 2 15.75 2459 6

10000 2 3 2 21.17 4930 18

100 2 4 2 10.60 40 11

500 2 4 2 49.99 200 40

1000 2 4 2 95.72 400 104

5000 2 4 2 475.91 2000 465

10000 2 4 2 949.61 4000 948

100 3 4 2 0.51 51 0

500 3 4 2 0.50 240 0

1000 3 4 2 1.06 501 3

5000 3 4 2 1.14 2465 0

10000 3 4 2 1.21 4948 0

