
4/2/2018

1

Lecture 30: The IO Model 1 External Sorting
Professor Xiannong Meng

Spring 2018
Lecture and activity contents are based on what Prof Chris Ré of Stanford

used in his CS 145 in the fall 2016 term with permission

Today’s Lecture
1. The Buffer
2. External Merge Sort

2

1. The Buffer
3

Transition to Mechanisms
1. So you can understand what the database is doing!

1. Understand the CS challenges of a database and how to use it.
2. Understand how to optimize a query

2. Many mechanisms have become stand-alone systems
• Indexing to Key-value stores
• Embedded join processing
• SQL-like languages take some aspect of what we discuss (PIG, Hive)

What you will learn about in this section
1. RECAP: Storage and memory model
2. Buffer primer

5

High-level: Disk vs. Main Memory

Disk:
• Slow: Sequential block access

• Read a blocks (not byte) at a time, so sequential access is cheaper than random
• Disk read / writes are expensive!

• Durable: We will assume that once on disk, data is safe!
• Cheap 6

Platters

SpindleDisk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Random Access Memory (RAM) or Main Memory:
• Fast: Random access, byte addressable

• ~10x faster for sequential access
• ~100,000x faster for random access!

• Volatile: Data can be lost if e.g. crash occurs, power goes out, etc!
• Expensive: For $100, get 16GB of RAM vs. 2TB of disk!

4/2/2018

2

The Buffer

Disk

Main Memory
Buffer

• A buffer is a region of physical memory used to store temporary data
• In this lecture: a region in main memory used to store intermediate data between disk and processes

• Key idea: Reading / writing to disk is slow-need to cache data!

Main Memory
Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located in main memory that operates over pagesand files:

Disk1,0,31,0,3

• Read(page): Read page from disk -> buffer if not already in buffer

Main Memory
Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located in main memory that operates over pagesand files:

Disk1,0,3

1,0,3• Read(page): Read page from disk -> buffer if not already in buffer
02

Processes can then read from / write to the page in the bufferProcesses can then read from / write to the page in the buffer

Main Memory
Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located in main memory that operates over pagesand files:

Disk1,0,3

1,2,3• Read(page): Read page from disk -> buffer if not already in buffer
• Flush(page): Evict page from buffer & write to disk

Main Memory
Buffer

The (Simplified) Buffer
• In this class: We’ll consider a buffer located in main memory that operates over pagesand files:

Disk1,0,3

1,2,3• Read(page): Read page from disk -> buffer if not already in buffer
• Flush(page): Evict page from buffer & write to disk
• Release(page): Evict page from buffer without writing to disk

Main Memory
Buffer

Disk

Managing Disk: The DBMS Buffer
• Database maintains its own buffer

• Why? The OS already does this…
• DB knows more about access patterns.

• Watch for how this shows up! (cf. Sequential Flooding)
• Recovery and logging require ability to flush to disk.

4/2/2018

3

The Buffer Manager
• A buffer manager handles supporting operations for the buffer:

• Primarily, handles & executes the “replacement policy”
• i.e. finds a page in buffer to flush/release if buffer is full and a new page needs to be read in

• DBMSs typically implement their own buffer management routines

A Simplified Filesystem Model
• For us, a page is a fixed-sized array of memory

• Think: One or more disk blocks
• Interface:

• write to an entry (called a slot) or set to “None”
• DBMS also needs to handle variable length fields

• Page layout is important for good hardware utilization as well (see 346)

• And a file is a variable-length list of pages
• Interface: create / open / close; next_page(); etc.

Disk
1,0,3 1,0,3File

Page

2. External Merge & Sort
15

What you will learn about in this section
1. External Merge- Basics
2. External Merge- Extensions
3. External Sort

16

External Merge

Challenge: Merging Big Files with Small Memory
How do we efficiently merge two sorted files when both are much larger than our main memory buffer?

4/2/2018

4

External Merge Algorithm
• Input: 2 sorted lists of length M and N
• Output: 1 sorted list of length M + N
• Required: At least 3 Buffer Pages
• IOs: 2(M+N)

Key (Simple) Idea
To find an element that is no larger than all elements in two lists, one only needs to compare minimum elements from each list.

If:
ଵܣ ≤ ଶܣ ≤ ⋯ ≤ ଵܤேܣ ≤ ଶܤ ≤ ⋯ ≤ :ெThenܤ
,ଵܣ)݊݅ܯ (ଵܤ ≤ ,ଵܣ)݊݅ܯ௜ܣ (ଵܤ ≤ ௝for i=1….N and j=1….Mܤ

If:
ଵܣ ≤ ଶܣ ≤ ⋯ ≤ ଵܤேܣ ≤ ଶܤ ≤ ⋯ ≤ :ெThenܤ
,ଵܣ)݊݅ܯ (ଵܤ ≤ ,ଵܣ)݊݅ܯ௜ܣ (ଵܤ ≤ ௝for i=1….N and j=1….Mܤ

External Merge Algorithm
7,11 20,31

23,24 25,30
Input:Two sorted files
Output:One mergedsorted file

Disk

Main Memory
Buffer1,5

2,22
F1

F2

External Merge Algorithm
7,11 20,31

23,24 25,30

Disk

Main Memory
Buffer

1,5 2,22
Input:Two sorted files
Output:One mergedsorted file

F1

F2

External Merge Algorithm
7,11 20,31

23,24 25,30

Disk

Main Memory
Buffer

5 22 1,2
Input:Two sorted files
Output:One mergedsorted file

F1

F2

External Merge Algorithm
7,11 20,31

23,24 25,30

Disk

Main Memory
Buffer

5 22

1,2

Input:Two sorted files
Output:One mergedsorted file

F1

F2

4/2/2018

5

External Merge Algorithm
20,31

23,24 25,30

Disk

Main Memory
Buffer

522

1,2
This is all the algorithm “sees”… Which file to load a page from next?
This is all the algorithm “sees”… Which file to load a page from next?

Input:Two sorted files
Output:One mergedsorted file

F1

F2

7,11

External Merge Algorithm
20,31

23,24 25,30

Disk

Main Memory
Buffer

522

1,2
We know that F2 only contains values ≥ 22… so we should load from F1!
We know that F2 only contains values ≥ 22… so we should load from F1!

Input:Two sorted files
Output:One mergedsorted file

F1

F2

7,11

External Merge Algorithm
20,31

23,24 25,30

Disk

Main Memory
Buffer

522

1,2

Input:Two sorted files
Output:One mergedsorted file

F1

F2
7,11

External Merge Algorithm
20,31

23,24 25,30

Disk

Main Memory
Buffer

5,722

1,2

Input:Two sorted files
Output:One mergedsorted file

F1

F2
11

External Merge Algorithm
20,31

23,24 25,30

Disk

Main Memory
Buffer

5,7

22

1,2

Input:Two sorted files
Output:One mergedsorted file

F1

F2
11

External Merge Algorithm

23,24 25,30

Disk

Main Memory
Buffer

5,7

22

1,2

Input:Two sorted files
Output:One mergedsorted file

F1

F2
11

20,31

And so on…
See IPython demo!See IPython demo!

4/2/2018

6

We can merge lists of arbitrary length with only 3 buffer pages.
If lists of size M and N, thenCost: 2(M+N) IOsEach page is read once, written once
If lists of size M and N, thenCost: 2(M+N) IOsEach page is read once, written once

With B+1 buffer pages, can merge B lists. How?

Today’s Lecture
1. External Merge Sort & Sorting Optimizations
2. Indexes: Motivations & Basics

32

1. External Merge Sort
33

What you will learn about in this section
1. External merge sort
2. External merge sort on larger files
3. Optimizations for sorting

34

Recap: External Merge Algorithm
• Suppose we want to merge two sorted files both much larger than main memory (i.e. the buffer)
• We can use the external merge algorithm to merge files of arbitrary length in 2*(N+M) IO operations with only 3 buffer pages!

Our first example of an “IO aware” algorithm / cost modelOur first example of an “IO aware” algorithm / cost model

External Merge Sort

4/2/2018

7

Why are Sorting Algorithms Important?
• Data requested from DB in sorted order is extremely common

• e.g., find students in increasing GPA order

• Why not just use quicksort in main memory??
• What about if we need to sort 1TB of data with 1GB of RAM…

A classic problem in computer science!A classic problem in computer science!

More reasons to sort…
• Sorting useful for eliminating duplicate copies in a collection of records (Why?)
• Sorting is first step in bulk loading B+ tree index.

• Sort-merge join algorithm involves sorting

Coming up…Coming up…

Next lectureNext lecture

Do people care?

Sort benchmark bears his name

http://sortbenchmark.org
So how do we sort big files?
1. Split into chunks small enough to sort in memory (“runs”)
2. Merge pairs (or groups) of runs using the external merge algorithm
3. Keep merging the resulting runs (each time = a “pass”) until left with one sorted file!

External Merge Sort Algorithm

27,24 3,1

Example:
• 3 Buffer pages
• 6-page file

Disk Main Memory
Buffer

18,22
F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Orange file = unsortedOrange file = unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory
Buffer

18,22
F1

F2

33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer pages
• 6-page file

Orange file = unsortedOrange file = unsorted

4/2/2018

8

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory
Buffer

18,22
F1

F2
33,12 55,3144,10

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer pages
• 6-page file

Orange file = unsortedOrange file = unsorted

External Merge Sort Algorithm

27,24 3,1

Disk Main Memory
Buffer

18,22
F1

F2
31,33 44,5510,12

Example:
• 3 Buffer pages
• 6-page file

1. Split into chunks small enough to sort in memory

Orange file = unsortedOrange file = unsorted

External Merge Sort Algorithm
Disk Main Memory

BufferF1

F2

31,33 44,5510,12

And similarly for F2

27,24 3,118,22 18,22 24,271,3

1. Split into chunks small enough to sort in memory

Example:
• 3 Buffer pages
• 6-page file
Each sorted file is a called a run
Each sorted file is a called a run

External Merge Sort Algorithm
Disk Main Memory

BufferF1

F2

2. Now just run the external merge algorithm & we’re done!

31,33 44,5510,12
18,22 24,271,3

Example:
• 3 Buffer pages
• 6-page file

Calculating IO Cost
For 3 buffer pages, 6 page file:
1. Split into two 3-page files and sort in memory 1. = 1 R + 1 W for each file = 2*(3 + 3) = 12 IO operations
2. Merge each pair of sorted chunks using the external merge algorithm 1. = 2*(3 + 3) = 12 IO operations
3. Total cost = 24 IO

Running External Merge Sort on Larger Files
Disk

31,33 44,5510,12

18,43 24,2745,38

Assume we still only have 3 buffer pages (Buffer not pictured)

Assume we still only have 3 buffer pages (Buffer not pictured)
31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

4/2/2018

9

Running External Merge Sort on Larger Files
Disk

31,33 44,5510,12

18,43 24,2745,38

31,33 47,5510,12

18,22 23,2041,3

31,33 39,5542,46

18,23 24,271,3

48,33 44,4010,12

18,22 24,2716,31

1. Split into files small enough to sort in buffer…
Assume we still only have 3 buffer pages (Buffer not pictured)

Assume we still only have 3 buffer pages (Buffer not pictured)

Running External Merge Sort on Larger Files
Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

1. Split into files small enough to sort in buffer… and sort
Assume we still only have 3 buffer pages (Buffer not pictured)

Assume we still only have 3 buffer pages (Buffer not pictured)

Call each of these sorted files a runCall each of these sorted files a run

Running External Merge Sort on Larger Files
Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

2. Now merge pairs of (sorted) files… the resulting files will be sorted!

Disk
18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Assume we still only have 3 buffer pages (Buffer not pictured)

Assume we still only have 3 buffer pages (Buffer not pictured)

Running External Merge Sort on Larger Files
Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

3. And repeat…

Disk
18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk
10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Assume we still only have 3 buffer pages (Buffer not pictured)

Assume we still only have 3 buffer pages (Buffer not pictured)

Call each of these steps a passCall each of these steps a pass

Running External Merge Sort on Larger Files
Disk

31,33 44,5510,12

27,38 43,4518,24

31,33 47,5510,12

20,22 23,413,18

39,42 46,5531,33

18,23 24,271,3

33,40 44,4810,12

22,24 27,3116,18

4. And repeat!

Disk
18,24 27,3110,12

43,44 45,5533,38

12,18 20,223,10

33,41 47,5523,31

18,23 24,271,3

39,42 46,5531,33

16,18 22,2410,12

33,40 44,4827,31

Disk
10,12 12,183,10

22,23 24,2718,20

33,33 38,4131,31

45,47 55,5543,44

10,12 16,181,3

23,24 24,2718,22

31,33 33,3927,31

44,46 48,5540,42

Disk
3,10 10,101,3

12,16 18,1812,12

20,22 22,2318,18

24,24 27,2723,24

31,31 31,3327,31

33,38 39,4033,33

43,44 44,4541,42

48,55 55,5546,47

Simplified 3-page Buffer Version
Assume for simplicity that we split an N-page file into N single-page runs and sort these; then:
• First pass: Merge N/2 pairs of runs each of length 1 page
• Second pass: Merge N/4 pairs of runs each of length 2 pages
• In general, for N pages, we do ࢍ࢕࢒૛ ࡺ passes• +1 for the initial split & sort
• Each pass involves reading in & writing out all the pages = 2N IO

Unsorted input file

Split & sort
Merge
Merge

Sorted!

 2N*(૛ࢍ࢕࢒ ࡺ +1) total IO cost!  2N*(૛ࢍ࢕࢒ ࡺ +1) total IO cost!

4/2/2018

10

Using B+1 buffer pages to reduce # of passes
Suppose we have B+1 buffer pages now; we can:
1. Increase length of initial runs. Sort B+1 at a time!
At the beginning, we can split the N pages into runs of length B+1 and sort these in memory

2ܰ(logଶ ܰ + 1)2ܰ(logଶ ܰ + 1)
IO Cost:

Starting with runs of length 1

2ܰ(logଶ ࡺ
࡮ + ૚ + 1)2ܰ(logଶ ࡺ
࡮ + ૚ + 1)

Starting with runs of length B+1

Using B+1 buffer pages to reduce # of passes
Suppose we have B+1 buffer pages now; we can:
2. Perform a B-way merge.
On each pass, we can merge groups of B runs at a time (vs. merging pairs of runs)!
IO Cost:
2ܰ(logଶ ܰ + 1)2ܰ(logଶ ܰ + 1) 2ܰ(logଶ ࡺ

࡮ + ૚ + 1)2ܰ(logଶ ࡺ
࡮ + ૚ + 1)

Starting with runs of length 1 Starting with runs of length B+1

2ܰ(log஻ ࡺ
࡮ + ૚ + 1)2ܰ(log஻ ࡺ
࡮ + ૚ + 1)

Performing B-way merges

Repacking

Repacking for even longer initial runs
• With B+1 buffer pages, we can now start with B+1-length initial runs

(and use B-way merges) to get 2ܰ(log஻ ࡺ
ା૚࡮ + 1) IO cost…

• Can we reduce this cost more by getting even longer initial runs?
• Use repacking- produce longer initial runs by “merging” in buffer as we sort at initial stage

Repacking Example: 3 page buffer
• Start with unsorted single input file, and load 2 pages

57,24 3,98

Disk
Main Memory

Buffer18,22F1
10,33 44,5531,12

F2

Repacking Example: 3 page buffer
• Take the minimum two values, and put in output page

57,24 3,98

Disk
Main Memory

Buffer18,22F1

10,33

44,55

31,12F2 31 33 10,12

m=12

Also keep track of max (last) value in current run…
Also keep track of max (last) value in current run…

4/2/2018

11

Repacking Example: 3 page buffer
• Next, repack

57,24 3,98

Disk
Main Memory

BufferF1

33F2 31 31,3310,12

m=12
44,55

18,22

Repacking Example: 3 page buffer
• Next, repack, then load another page and continue!

57,24 3,98

Disk
Main Memory

BufferF1

F2 31,3310,12

m=12
44,55

m=33

18,22

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last) in the sorted run…

3,98

Disk
Main Memory

BufferF1

F2 31,3310,12

m=33

18,2218,22

We call these values frozen because we can’t add them to this run…We call these values frozen because we can’t add them to this run…

44,55
57,24

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last) in the sorted run… Disk

Main Memory
BufferF1

F2 31,3310,12

m=55

44,55 57,24 18,22
3,98

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last) in the sorted run… Disk

Main Memory
BufferF1

F2 31,3310,12

m=55

44,55 57,24 18,22 3,98

Repacking Example: 3 page buffer
• Now, however, the smallest values are less than the largest (last) in the sorted run… Disk

Main Memory
BufferF1

F2 31,3310,12

m=55

44,55 3,24 18,22 57,98

4/2/2018

12

Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty, start new run with the frozen values

Disk
Main Memory

BufferF1

F2 31,3310,12

m=0

44,55 3,24 18,22
57,98

F3

Repacking Example: 3 page buffer
• Once all buffer pages have a frozen value, or input file is empty, start new run with the frozen values

Disk
Main Memory

BufferF1

F2 31,3310,12

m=0

44,55
57,98

F3

3,18 22,24

Repacking
• Note that, for buffer with B+1 pages:

• If input file is sorted  nothing is frozen  we get a single run!
• If input file is reverse sorted (worst case)  everything is frozen  we get runs of length B+1

• In general, with repacking we do no worse than without it!
• What if the file is already sorted?
• Engineer’s approximation: runs will have ~2(B+1) length

~2ܰ(log஻ ࡺ
૛(࡮ + ૚) + 1)~2ܰ(log஻ ࡺ
૛(࡮ + ૚) + 1)

Summary
• Basics of IO and buffer management.

• See notebook for more fun! (Learn about sequential flooding)
• We introduced the IO cost model using sorting.

• Saw how to do merges with few IOs,
• Works better than main-memory sort algorithms.

• Described a few optimizations for sorting

What you will learn about in this section
1. Indexes: Motivation
2. Indexes: Basics

71

Index Motivation
• Suppose we want to search for people of a specific age
• First idea: Sort the records by age… we know how to do this fast!
• How many IO operations to search over N sorted records?

• Simple scan: O(N)
• Binary search: O(܏ܗܔ૛ (ࡺ

Person(name, age)

Could we get even cheaper search? E.g. go from ܏ܗܔ૛ ࡺ ૛܏ܗܔ Could we get even cheaper search? E.g. go from?ࡺ૛૙૙܏ܗܔ ࡺ ?ࡺ૛૙૙܏ܗܔ

4/2/2018

13

Index Motivation
• What about if we want to insert a new person, but keep the list sorted?

• We would have to potentially shift N records, requiring up to ~ 2*N/P IO operations (where P = # of records per page)!
• We could leave some “slack” in the pages…

4,5 6,71,3 3,4 5,61,2
2

7,

Could we get faster insertions?Could we get faster insertions?

Index Motivation
• What about if we want to be able to search quickly along multiple attributes (e.g. not just age)?

• We could keep multiple copies of the records, each sorted by one attribute set… this would take a lot of space
Can we get fast search over multiple attribute (sets) without taking too much space?Can we get fast search over multiple attribute (sets) without taking too much space?

We’ll create separate data structures called indexes to address all these pointsWe’ll create separate data structures called indexes to address all these points

Further Motivation for Indexes: NoSQL!
• NoSQL engines are (basically) just indexes!

• A lot more is left to the user in NoSQL… one of the primary remaining functions of the DBMS is still to provide index over the data records, for the reasons we just saw!
• Sometimes use B+ Trees (covered next), sometimes hash indexes (not covered here)

Indexes are critical across all DBMS typesIndexes are critical across all DBMS types

Indexes: High-level
• An index on a file speeds up selections on the search key fields for the index.

• Search key properties
• Any subset of fields
• is not the same as key of a relation

• Example:
On which attributes would you build indexes?
On which attributes would you build indexes?Product(name, maker, price)

More precisely
• An index is a data structure mapping search keys to sets of rows in a database table

• Provides efficient lookup & retrieval by search key value- usually much faster than searching through all the rows of the database table
• An index can store the full rows it points to (primary index) or pointers to those rows (secondary index)

• We’ll mainly consider secondary indexes

Operations on an Index
• Search: Quickly find all records which meet some condition on the search key attributes

• More sophisticated variants as well. Why?
• Insert / Remove entries

• Bulk Load / Delete. Why?

Indexing is one the most important features provided by a database for performanceIndexing is one the most important features provided by a database for performance

4/2/2018

14

Conceptual Example
What if we want to return all books published after 1867? The above table might be very expensive to search over row-by-row…

SELECT *
FROM Russian_Novels
WHERE Published > 1867

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …
002 Crime and Punishment Dostoyevsky 1866 …
003 Anna Karenina Tolstoy 1877 …

Russian_Novels
Conceptual Example

BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …
002 Crime and Punishment Dostoyevsky 1866 …
003 Anna Karenina Tolstoy 1877 …

Published BID
1866 002
1869 001
1877 003

Maintain an index for this, and search over that!

Russian_NovelsBy_Yr_Index

Why might just keeping the table sorted by year not be good enough?Why might just keeping the table sorted by year not be good enough?

Conceptual Example
BID Title Author Published Full_text
001 War and Peace Tolstoy 1869 …
002 Crime and Punishment Dostoyevsky 1866 …
003 Anna Karenina Tolstoy 1877 …

Published BID
1866 002
1869 001
1877 003

Indexes shown here as tables, but in reality we will use more efficient data structures…Indexes shown here as tables, but in reality we will use more efficient data structures…

Russian_NovelsBy_Yr_Index

Author Title BID
Dostoyevsky Crime and Punishment 002
Tolstoy Anna Karenina 003
Tolstoy War and Peace 001

By_Author_Title_Index Can have multiple indexes to support multiple search keys

Covering Indexes

Published BID
1866 002
1869 001
1877 003

By_Yr_Index
We say that an index is covering for a specific queryif the index contains all the needed attributes-meaning the query can be answered using the index alone!

We say that an index is covering for a specific queryif the index contains all the needed attributes-meaning the query can be answered using the index alone!
The “needed” attributes are the union of those in the SELECT and WHERE clauses…The “needed” attributes are the union of those in the SELECT and WHERE clauses…

SELECT Published, BID
FROM Russian_Novels
WHERE Published > 1867

Example:

High-level Categories of Index Types
• B-Trees (covered next)

• Very good for range queries, sorted data
• Some old databases only implemented B-Trees
• We will look at a variant called B+ Trees

• Hash Tables (not covered)
• There are variants of this basic structure to deal with IO
• Called linear or extendible hashing- IO aware!

The data structures we present here are “IO aware”
The data structures we present here are “IO aware”

Real difference between structures: costs of ops determines which index you pick and whyReal difference between structures: costs of ops determines which index you pick and why

