
4/10/2018

1

Lecture 33:
The Relational Model 2

Professor Xiannong Meng

Spring 2018

Lecture and activity contents are based on what Prof Chris Ré of Stanford

used in his CS 145 in the fall 2016 term with permission

• Five basic operators:

1. Selection: s

2. Projection: P

3. Cartesian Product: 

4. Union: 

5. Difference: -

• Derived or auxiliary operators:

• Intersection, complement

• Joins (natural,equi-join, theta join, semi-join)

• Renaming: r

• Division

Relational Algebra (RA)

We’ll look at these first!

And also at one example of a
derived operator (natural
join) and a special operator
(renaming)

• Returns all tuples which satisfy a
condition

• Notation: sc(R)

• Examples

• sSalary > 40000 (Employee)

• sname = “Smith” (Employee)

• The condition c can be =, <, , >,
, <>

1. Selection (𝜎)

SELECT *
FROM Students
WHERE gpa > 3.5;

SQL:

RA:

𝜎𝑔𝑝𝑎 >3.5(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

• Eliminates columns, then removes
duplicates

• Notation: P A1,…,An(R)

• Example: project social-security
number and names:
• P SSN, Name (Employee)

• Output schema: Answer(SSN,
Name)

2. Projection (Π)

SELECT DISTINCT
sname,
gpa

FROM Students;

SQL:

RA:

Π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

Note that RA Operators are Compositional!

SELECT DISTINCT
sname,
gpa

FROM Students
WHERE gpa > 3.5;

Students(sid,sname,gpa)

How do we represent
this query in RA?

Π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝜎𝑔𝑝𝑎>3.5(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

𝜎𝑔𝑝𝑎>3.5(Π𝑠𝑛𝑎𝑚𝑒,𝑔𝑝𝑎(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠))

Are these logically equivalent?

• Each tuple in R1 with each tuple in
R2

• Notation: R1  R2

• Example:
• Employee  Dependents

• Rare in practice; mainly used to
express joins

3. Cross-Product (×)

SELECT *
FROM Students, People;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 × 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

4/10/2018

2

ssn pname address

1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid sname gpa

001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 × 𝑃𝑒𝑜𝑝𝑙𝑒

×

ssn pname address sid sname gpa

1234545 John 216 Rosse 001 John 3.4

5423341 Bob 217 Rosse 001 John 3.4

1234545 John 216 Rosse 002 Bob 1.3

5423341 Bob 216 Rosse 002 Bob 1.3

People StudentsAnother example:

• Changes the schema, not the instance

• A ‘special’ operator- neither basic nor
derived

• Notation: r B1,…,Bn (R)

• Note: this is shorthand for the proper
form (since names, not order
matters!):
• r A1B1,…,AnBn (R)

Renaming (𝜌)

SELECT
sid AS studId,
sname AS name,
gpa AS gradePtAvg

FROM Students;

SQL:

RA:
𝜌𝑠𝑡𝑢𝑑𝐼𝑑,𝑛𝑎𝑚𝑒,𝑔𝑟𝑎𝑑𝑒𝑃𝑡𝐴𝑣𝑔(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students(sid,sname,gpa)

We care about this operator because we
are working in a named perspective

sid sname gpa

001 John 3.4

002 Bob 1.3

𝜌𝑠𝑡𝑢𝑑𝐼𝑑,𝑛𝑎𝑚𝑒,𝑔𝑟𝑎𝑑𝑒𝑃𝑡𝐴𝑣𝑔(𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

Students

studId name gradePtAvg

001 John 3.4

002 Bob 1.3

Students

Another example:

• Notation: R1 ⋈ R2

• Joins R1 and R2 on equality of all shared
attributes
• If R1 has attribute set A, and R2 has attribute set

B, and they share attributes A⋂B = C, can also be
written: R1 ⋈ 𝐶 R2

• Our first example of a derived RA operator:
• Meaning: R1 ⋈ R2 = PA U B(sC=D(𝜌𝐶→𝐷(R1)  R2))
• Where:

• The rename 𝜌𝐶→𝐷 renames the shared attributes in
one of the relations

• The selection sC=D checks equality of the shared
attributes

• The projection PA U B eliminates the duplicate
common attributes

Natural Join (⋈)

SELECT DISTINCT
ssid, S.name, gpa,
ssn, address

FROM
Students S,
People P

WHERE S.name = P.name;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,name,gpa)
People(ssn,name,address)

ssn P.name address

1234545 John 216 Rosse

5423341 Bob 217 Rosse

sid S.name gpa

001 John 3.4

002 Bob 1.3

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈ 𝑃𝑒𝑜𝑝𝑙𝑒

⋈

sid S.name gpa ssn address

001 John 3.4 1234545 216 Rosse

002 Bob 1.3 5423341 216 Rosse

People PStudents S
Another example: Natural Join

• Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?

• Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R ⋈ S ?

4/10/2018

3

Example: Converting SFW Query -> RA

How do we represent
this query in RA?

Π𝑔𝑝𝑎,𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝜎𝑔𝑝𝑎>3.5(𝑆 ⋈ 𝑃))

SELECT DISTINCT
gpa,
address

FROM Students S,
People P

WHERE gpa > 3.5 AND
sname = pname;

Students(sid,sname,gpa)
People(ssn,sname,address)

Logical Equivalence of RA Plans

• Given relations R(A,B) and S(B,C):

• Here, projection & selection commute:

• 𝜎𝐴=5(Π𝐴(𝑅)) = Π𝐴(𝜎𝐴=5(𝑅))

• What about here?

• 𝜎𝐴=5(Π𝐵(𝑅)) ?= Π𝐵(𝜎𝐴=5(𝑅))

We’ll look at this in more depth later in the lecture…

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan

Execution

We saw how we can transform declarative SQL queries into
precise, compositional RA plans

RDBMS Architecture

How does a SQL engine work ?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan

Execution

We’ll look at how to then optimize these
plans later in this lecture

RDBMS Architecture

How is the RA “plan” executed?

SQL
Query

Relational
Algebra (RA)

Plan

Optimized
RA Plan

Execution

We already know how to execute all the basic operators!

RA Plan Execution

• Natural Join / Join:
• We saw how to use memory & IO cost considerations to pick the correct algorithm

to execute a join with (BNLJ, SMJ, HJ…)!

• Selection:
• We saw how to use indexes to aid selection
• Can always fall back on scan / binary search as well

• Projection:
• The main operation here is finding distinct values of the project tuples; we briefly

discussed how to do this with e.g. hashing or sorting

We already know how to execute all the basic operators!

4/10/2018

4

2. Adv. Relational Algebra

19

What you will learn about in this section

1. Set Operations in RA

2. Fancier RA

3. Extensions & Limitations

20

• Five basic operators:

1. Selection: s

2. Projection: P

3. Cartesian Product: 

4. Union: 

5. Difference: -

• Derived or auxiliary operators:

• Intersection, complement

• Joins (natural,equi-join, theta join, semi-join)

• Renaming: r

• Division

Relational Algebra (RA)

We’ll look at these

And also at some of
these derived operators

1. Union () and 2. Difference (–)

• R1  R2

• Example:
• ActiveEmployees  RetiredEmployees

• R1 – R2

• Example:
• AllEmployees - RetiredEmployees

R1 R2

R1 R2

What about Intersection () ?

• It is a derived operator

• R1  R2 = R1 – (R1 – R2)

• Also expressed as a join!

• Example
• UnionizedEmployees  RetiredEmployees

R1 R2

Fancier RA

4/10/2018

5

Theta Join (⋈q)

• A join that involves a predicate

• R1 ⋈q R2 = s q (R1  R2)

• Here q can be any condition

SELECT *
FROM
Students,People

WHERE q;

SQL:

RA:
𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋈𝜃 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Note that natural join is a
theta join + a projection.

Equi-join (⋈ A=B)

• A theta join where q is an equality

• R1 ⋈ A=B R2 = s A=B (R1  R2)

• Example:
• Employee ⋈ SSN=SSN Dependents

SELECT *
FROM
Students S,
People P

WHERE sname = pname;

SQL:

RA:

𝑆 ⋈𝑠𝑛𝑎𝑚𝑒=𝑝𝑛𝑎𝑚𝑒 𝑃

Students(sid,sname,gpa)
People(ssn,pname,address)

Most common join
in practice!

Semijoin (⋉)

• R ⋉ S = P A1,…,An (R ⋈ S)

• Where A1, …, An are the attributes in R

• Example:
• Employee ⋉ Dependents

SELECT DISTINCT
sid,sname,gpa

FROM
Students,People

WHERE
sname = pname;

SQL:

RA:

𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⋉ 𝑃𝑒𝑜𝑝𝑙𝑒

Students(sid,sname,gpa)
People(ssn,pname,address)

Semijoins in Distributed Databases

• Semijoins are often used to compute natural joins in distributed databases

SSN Name

.

SSN Dname Age

.

Employee

Dependents

network

Employee ⋈ ssn=ssn (s age>71 (Dependents))

T = P SSN s age>71 (Dependents)

R = Employee ⋉ T

Answer = R ⋈ Dependents

Send less data to
reduce network
bandwidth!

RA Expressions Can Get Complex!

Person Purchase Person Product

sname=fred sname=gizmo

P pidP ssn

seller-ssn=ssn

pid=pid

buyer-ssn=ssn

P name

Multisets

4/10/2018

6

Recall that SQL uses Multisets

31

Tuple

(1, a)

(1, a)

(1, b)

(2, c)

(2, c)

(2, c)

(1, d)

(1, d)

Tuple 𝝀(𝑿)

(1, a) 2

(1, b) 1

(2, c) 3

(1, d) 2Equivalent
Representations

of a Multiset

Multiset X

Multiset X

Note: In a set all
counts are {0,1}.

𝝀 𝑿 = “Count of tuple in X”
(Items not listed have
implicit count 0)

Generalizing Set Operations to Multiset
Operations

32

Tuple 𝝀(𝑿)

(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1, a) 2

(1, b) 0

(2, c) 2

(1, d) 0

Multiset Z

∩ =

𝝀 𝒁 = 𝒎𝒊𝒏(𝝀 𝑿 , 𝝀 𝒀)
For sets, this is

intersection

33

Tuple 𝝀(𝑿)

(1, a) 2

(1, b) 0

(2, c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)

(1, a) 5

(1, b) 1

(2, c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)

(1, a) 7

(1, b) 1

(2, c) 5

(1, d) 2

Multiset Z

∪ =

𝝀 𝒁 = 𝝀 𝑿 + 𝝀 𝒀
For sets,

this is union

Generalizing Set Operations to Multiset
Operations

Operations on Multisets

All RA operations need to be defined carefully on bags

• sC(R): preserve the number of occurrences

• PA(R): no duplicate elimination

• Cross-product, join: no duplicate elimination

This is important- relational engines work on
multisets, not sets!

RA has Limitations !

• Cannot compute “transitive closure”

• Find all direct and indirect relatives of Fred

• Cannot express in RA !!!
• Need to write C program, use a graph engine, or modern SQL…

Name1 Name2 Relationship

Fred Mary Father

Mary Joe Cousin

Mary Bill Spouse

Nancy Lou Sister

