Lecture 33: The Relational Model 2

Professor Xiannong Meng Spring 2018

Lecture and activity contents are based on what Prof Chris Ré of Stanford used in his CS 145 in the fall 2016 term with permission

Relational Algebra (RA)

- <u>Five basic operators:</u> We'll look at these first! Selection: σ
 Projection: Π 3. Cartesian Product: 4. Union: U 5. Difference: -
- Derived or auxiliary operators:
 - · Intersection, complement
 - Joins (natural equi-join, theta join, semi-join)
 - Renaming: ρ Division

And also at one example of a derived operator (natural join) and a special operator

1. Selection (σ)

- Returns all tuples which satisfy a condition
- Notation: σ_c(R)
- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - σ_{name = "Smith"} (Employee)
- The condition c can be =, <, ≤, >,

SQL: WHERE gpa > 3.5;

 $\sigma_{gpa>3.5}(Students)$

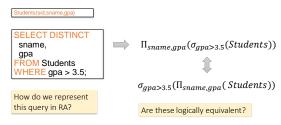
2. Projection (Π)

- Eliminates columns, then removes duplicates
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - Π _{SSN, Name} (Employee)
 Output schema: Answer(SSN,
 - Name)

SQL: SELECT DISTINCT sname. gpa

 $\Pi_{sname,gpa}(Students)$

Note that RA Operators are Compositional!



3. Cross-Product (x)

- Each tuple in R1 with each tuple in R2
- Notation: R1 × R2
- Example:
 - Employee × Dependents
- · Rare in practice; mainly used to express joins

SQL: ROM Students, People;

Students × People

Another example: People

1234545 John 216 Rosse Students

Students × People

ssn	pname	address	sid	sname	gpa
1234545	John	216 Rosse	001	John	3.4
5423341	Bob	217 Rosse	001	John	3.4
1234545	John	216 Rosse	002	Bob	1.3
5423341	Bob	216 Rosse	002	Bob	1.3

Renaming (ρ)

- Changes the schema, not the instance
- A 'special' operator- neither basic nor derived
- Notation: $\rho_{\text{ B1,...,Bn}}$ (R)

· Note: this is shorthand for the proper form (since names, not order matters!):

• $\rho_{A1 \rightarrow B1,...,An \rightarrow Bn}$ (R)

SQL: sid AS studld, sname AS name, gpa AS gradePtAvg FROM Students;

RA: $\rho_{studId,name,gradePtAvg}(Students)$

We care about this operator because we are working in a named perspective

Another example:

Students

sid	sname	gpa
001	John	3.4
002	Roh	1.3

 $\rho_{studId,name,gradePtAvg}(Students)$

studId	name	gradePtAvg
001	John	3.4
002	Bob	1.3

Natural Join (⋈)

- Notation: R₁ ⋈ R₂
- Joins R₁ and R₂ on equality of all shared attributes
 - If R_1 has attribute set A, and R_2 has attribute set B, and they share attributes $A \cap B = C$, can also be written: $R_1 \bowtie_C R_2$
- Our first example of a derived RA operator:

 Meaning: R₁ ⋈ R₂ = Π_{AUB}(σ_{C-D}(ρ_{C-D}(R₁) × R₂))
 Where:

 The rename _{Q-D} renames the shared attributes in one of the relations.
 The selection σ_{C-D} checks equality of the shared attributes
 The projection Π_{AUB} eliminates the duplicate common attributes

SQL:

ssid, S.name, gpa, ssn, address Students S, People P WHERE S.name = P.name;

Students ⋈ People

Another example:

Students S

People P

ssn	P.name	address
1234545	John	216 Rosse
5423341	Roh	217 Rosse

Students ⋈ People

sid	S.name	gpa	ssn	address
001	John	3.4	1234545	216 Rosse
002	Boh	13	5423341	216 Rosse

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R \bowtie S?
- Given R(A, B, C), S(D, E), what is R \bowtie S ?
- Given R(A, B), S(A, B), what is R \bowtie S ?

Example: Converting SFW Query -> RA



Logical Equivalence of RA Plans

- Given relations R(A,B) and S(B,C):
 - Here, projection & selection commute:
 - $\sigma_{A=5}(\Pi_A(R)) = \Pi_A(\sigma_{A=5}(R))$
 - · What about here?
 - $\sigma_{A=5}(\Pi_B(R))$? = $\Pi_B(\sigma_{A=5}(R))$

We'll look at this in more depth later in the lecture...

RDBMS Architecture

How does a SQL engine work?

We saw how we can transform declarative SQL queries into precise, compositional RA plans

RDBMS Architecture

How does a SQL engine work?

We'll look at how to then optimize these plans later in this lecture

RDBMS Architecture

How is the RA "plan" executed?

We already know how to execute all the basic operators!

RA Plan Execution

- Natural Join / Join:
 - We saw how to use memory & IO cost considerations to pick the correct algorithm to execute a join with (BNL), SMJ, HJ...)!
- Selection:
 - We saw how to use indexes to aid selection
 Can always fall back on scan / binary search as well
- Projection:
- The main operation here is finding distinct values of the project tuples; we briefly discussed how to do this with e.g. hashing or sorting

We already know how to execute all the basic operators!

What you will learn about in this section

- 1. Set Operations in RA
- 2. Fancier RA
- 3. Extensions & Limitations

2. Adv. Relational Algebra

Relational Algebra (RA)

- Five basic operators:
 - 1. Selection: σ
 - 2. Projection: Π
 - 3. Cartesian Product: ×

4. Union: ∪
5. Difference: - We'll look at these

- <u>Derived or auxiliary operators:</u>
 - Intersection, complementJoins (natural,equi-join, theta join, semi-join)
 - Renaming: ρ
 - Division

And also at some of these derived operators

1. Union (\cup) and 2. Difference (-)

- $\bullet \ R1 \cup R2$
- Example:
 - ActiveEmployees \cup RetiredEmployees
- R1 R2
- Example:
 - AllEmployees RetiredEmployees

What about Intersection (\cap) ?

- It is a derived operator
- R1 ∩ R2 = R1 (R1 R2)
- Also expressed as a join!
- Example
 - $\bullet \ \, {\sf UnionizedEmployees} \cap {\sf RetiredEmployees}$

Fancier RA

Theta Join (\bowtie_{θ})

- A join that involves a predicate
- R1 \bowtie_{θ} R2 = σ_{θ} (R1 × R2)
- Here $\boldsymbol{\theta}$ can be any condition

Note that natural join is a theta join + a projection.

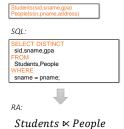
Equi-join (⋈ _{A=B})

- A theta join where $\boldsymbol{\theta}$ is an equality
- R1 \bowtie A=B R2 = σ A=B (R1 \times R2)
- Example:
 - Employee ⋈ _{SSN=SSN} Dependents

Most common join in practice!

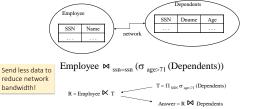
Semijoin (⋉)

- R ⋈ S = Π _{A1,...,An} (R ⋈ S)
- \bullet Where $A_1,\,...,\,A_n$ are the attributes in R
- Example:



Semijoins in Distributed Databases

• Semijoins are often used to compute natural joins in distributed databases



RA Expressions Can Get Complex!

Multisets

Recall that SQL uses Multisets

λ(X)= "Count of tuple in X" (Items not listed have implicit count 0)

Multiset X Tuple (1, a) (1, b) (2, c) (1, d)

Note: In a set all counts are {0,1}.

Generalizing Set Operations to Multiset Operations

Multiset X		
Tuple	$\lambda(X)$	
(1, a)	2	
(1, b)	0	
(2, c)	3	
(1, d)	0	

$$\lambda(Z) = min(\lambda(X), \lambda(Y))$$

For sets, this is intersection

Generalizing Set Operations to Multiset Operations

Equivalent Representations

of a **Multiset**

	Multiset X			
١	Tuple	$\lambda(X)$		
	(1, a)	2		
	(1, b)	0		
	(2, c)	3		
[(1, d)	0	1	

$$\lambda(Z) = \lambda(X) + \lambda(Y)$$

For sets, this is **union**

Operations on Multisets

All RA operations need to be defined carefully on bags

- $\sigma_{\text{c}}(\text{R}):$ preserve the number of occurrences
- $\Pi_A(R)$: no duplicate elimination
- Cross-product, join: no duplicate elimination

This is important- relational engines work on multisets, not sets!

RA has Limitations!

• Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!!
 - Need to write C program, use a graph engine, or modern SQL...